

INTRODUCTION TO OLI Engine 12.x for Unisim Design

think simulation

getting the chemistry right

Introduction to OLI Engine 12.x for Unisim Design

© 1997-2024 OLI Systems, Inc.

The enclosed materials are provided to the lessees, selected individuals and agents of OLI Systems, Inc. The material may not be duplicated or otherwise provided to any entity without the expressed permission of OLI Systems, Inc.

OLI Engine 12.x for Unisim Design

Contact Information

Visit the Contact OLI Systems page at <u>https://www.olisystems.com/techsupport</u> to submit general inquiries, contact Technical Support, or search for an address and phone number.

If you need to contact Support, you can submit an online request via OLI Support Center: <u>https://support.olisystems.com</u>

Other useful links and resources are: Product Downloads: http://downloads.olisystems.com/

Disclaimer

This manual was produced using the OLI Engine 12.0.0.6 for Unisim Design R500

As time progresses, new data and refinements to existing data sets can result in values that you obtain being slightly different than what is presented in this manual. This is a natural progress and cannot be avoided. When large systematic changes to the software occur, this manual will be updated.

Trademarks

Unisim Design is a trademark of Honeywell

OLI, OLI Systems and the "OLI Engine for Unisim Design" are trademarks of OLI Systems, Inc. Parsippany, New Jersey, 07054

Table of Contents

DISCLAIMER	2
TRADEMARKS	2
TABLE OF CONTENTS	3
OVERVIEW	4
Assumptions	4
Application	5
Using the OLI Engine for Unisim Design	5
Selecting Fluid Packages	7
Entering Components	13
Creating the Simulation	14
Selecting the mixer	
Entering Stream Composition Data	
Reviewing the output	

Overview

The OLI Engine for Unisim Design interface greatly enhances Unisim Design's capability to model electrolyte systems. A rigorous and self-consistent thermodynamic framework is employed to tame the mathematically stiff equations commonly found in electrolyte systems. Also, a database of over 10,000 components is available.

The OLI model is available as a fluid package within Unisim Design This "Getting Started" guide will show you how to create the electrolyte chemistry for a simple case and then create a simple flowsheet in Unisim Design

Assumptions

The following assumptions are made for this guide:

- 1. Unisim Design is currently installed and running on your computer.
- 2. The license manager for Unisim Design is currently set up.
- 3. The OLI Engine for Unisim Design product has been installed.
- 4. The OLI security model is running.
- 5. Unisim Design R500 (or later) is being used.
- 6. The user is expected to know how to use Unisim Design

Application

This application will take an acid stream and titrate it against a basic stream to see the resultant pH changes. Some heat and vapor are expected to be evolved.

Using the OLI Engine for Unisim Design

Start Unisim Design in the normal manner. A splash screen will display and then disappear.

This will now display the Unisim Design development environment.

Entering the Chemistry and fluid packages

UniSim Design K491 le Tools Help Ctrl+N ٩ <u>N</u>ew Case **b** Refinery Case <u>O</u>pen Ctrl+S Save Template Save As... Ctrl+Shift+S -၀ိ္တ္ရွိ Co<u>l</u>umn Sa<u>v</u>e All... P<u>V</u>T Exp Template <u>C</u>lose Case Case Scenario Project Close All.

This will bring up the **Simulation Environment**.

🔰 NoName.usc - UniSim Design R500	-	. 🗆	×
File Edit Basis Tools Window Help			
Ů ⊡ ⊟ ⊖ Ц ⊍ ≚ ≫ ♫ 🦕	Environment: Basis Mode: Stead	ly State	Ö
🛆 Simulation Basis Manager			5)
Component Lists			õ
Master Component List View			(F1
Add			\bigcirc
Delete			
Сору			00
Import			
Export			
Refresh			
Re-import			
Enter PV I Environment			
Application is not registered for	OLE Automation.		

Selecting Fluid Packages

OLI recommends starting with adding a fluid package.

Select Fluid Packages

A Simulation Basis Manager						
Component Lists		1				
Master Component List	View					
	Add					
	Delete					
	Сору					
	Import					
	Export					
	Refresh					
	Re-import					
Components Fluid Pkgs	Hypotheticals	Hypo Correlation Sets	Oil Manager	Reactions	Component Maps	Jser Properties
Enter PVT Environment	<u>, , pouncileans</u>)	Enter Regression En	vironment		Enter Simulation Er	vironment

There are no fluid packages currently defined for this simulation. We need to add a package.

Click the Add button

스 Simulation Basis Manager	
Current Fluid Packages	Flowsheet - Fluid Pkg Associatio <u>n</u> s
View	Flowsheet Fluid Pkg To Use
Add	Case (Main) <empty></empty>
Delete	
Сору	
View Users	Default Fluid Pkg
Import	Fluid Pkg for New Sub-FlowSheets
Export	Use Default Fluid Pkg Use Parent's Fluid Pkg
Components Fluid Pkgs Hypotheticals Hypo Correlation Sets	Oil Manager Reactions Component Maps Jser Properties
Enter PVT Environment Enter Regression Env	ironment Enter Simulation Environment

Scroll down the window to find OLI_Electrolyte

👙 Fluid Package: Basis-1	
Property Package Selection Kabadi-Danner Lee-Kesler-Plocker Margules MBWR NBS Steam NRTL OLI_Electrolyte Peng-Robinson PR-Twu PRSV REFPROP	
Component List Selection Component List - 1 View	Advanced Thermodynamics Switch To UniSim Thermo UniSim Thermo Regression Export
Set Up Parameters Parameters2 Binary Coeffs Delete Name Basis-1 Property Pk	Stab Test Phase Order Rxns Tabular Notes

Highlight the object OLI_Electrolyte.

The window changes to display some OLI specific options. It is beyond the scope of this document to explain those options currently. Notice that the name of the component list is **Component List -1**.

Property Package Selection Lee-Kesler-Plocker MBWR NBS Steam NRTL OLL_Electrolyte Peng-Robinson PR-Twu PRSV REFPROP	Property Package Filter All Types EOSs Activity Models Chao Seader Models Vapour Pressure Models Electrolyte Models Miscellaneous Types	Initialize Electrolyte Environment Phase Include Vapour Aqueous Solid 2 nd Liquid Redox Options Included Redox Subsystem Selection
Component List Selection Component List - 1	<u>∨</u> iew	View Electrolyte Reaction in Trace Window
Set Up Parameters P Delete <u>N</u> ame E	arameters2 Binary Coeffs Sta lasis-1 Property Pkg	b Test Phase Order Rxns Tabular Notes OLI_Electrolyte Edit Properties

For this example, we will use the MSE thermodynamic framework.

There are numerous methods to enter components for the simulation. For OLI, we recommend clicking the **View** button.

🎍 Fluid Package: Basis-1		
Propert <u>y</u> Package Selectio Kabadi-Danner Lee-Kesler-Plocker Margules MBWR NBS Steam NRTL OLI_Electrolyte Peng-Robinson PR-Twu PRSV REFPROP	n Property Package Filter	Initialize Electrolytes Environment Tase Option apour rganic olid queous edox Options cluded Redox Subsystem Selection
Component List Selection		View Electrolyte Reaction in Trace Window
Component List - 1	View	○ AQ MSE
Set Up Parameters	Parameters2 Binary Coeffs Stab Test	Phase Order Rxns Tabular Notes
Delete Name	Basis-1 Property Pkg	OLI_Electrolyte Edit Properties

This will bring up the component list.

ద Component List View:	Component List - 1					
Add Component	Selected Components		-Components Av Match	ailable in the Library	View Filters	
Hypo Components Other Comp Lists		<add pure<br=""><-Substitute-> Remove> Sort List iew Component</add>	Sim Name Methane Ethane Propane i-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Nonane Nitrogen CO2	Full Name / Synonym C1 C2 C3 i-C4 i-C5 n-C5 C6 C7 C8 C9 C10 N2 C02	Formula CH4 C2H6 C3H8 C4H10 C5H12 C5H12 C5H12 C5H12 C5H14 C7H16 C8H18 C9H20 C10H22 N2 CO2	^
< >			Show Syno	nyms Cluste	er	
Selected Compon	ent by Type J Component Database	is C				

You have two types of components to choose from. The default is the *Traditional* Unisim Design components. However, these components are not suitable for electrolyte calculations. Please select *OLI Electrolyte*.

Add Component List View:	Component List - 1 Selected Components	Components Available in the Library-	Databank Additional Databank
OLI Electrolyte		Sim Name Eull Name / Synonym	
Other Comp Lists	<add f<="" th=""><th>ACENITRILE Acetonitrile ACET2 Acetic</th><th>CH3CN A C4H8O4</th></add>	ACENITRILE Acetonitrile ACET2 Acetic	CH3CN A C4H8O4
	<-Substitu	ACETALDEHD Acettic ACETALDEHD Ethanal ACETONE Acetone	CH3COCH3 C2H4O CH3COCH3
	Remove	ACEITLENE ACETIVENE ACIDSO0 Acid ACIDSO1 acid	C2H2 C22H36 C10H16
	Sort List.	ACIDSO2 acid ACIDSO3 acid ACIDSO4 acid	C14H20 C18H28 C23H32
	View Compo	ACIDSO5 acid ACRYL2 Acrylic ACRYLONTRL 2-Propenenitrile	C25H34 C6H8O4 C3H3N
< >		ADGLUC alpha-D-Glucose	C6H12O6
Selected Compone	ent by Type Component Databases		J
Delete	Name	Component List - 1	

For OLI electrolyte calculations, OLI recommends that the first component you enter is H2O (water). Note, that the names in this list are often referred to as the OLI Tag name.

≜ Component List View:	Component List - 1						×
Add Component	Selected Components		-Components Av	ailable in the Library	Databank		
✓ Library Components			Match H2	20	Addition	al Databank	
Traditional				•	() AQ	MSE	
> Hypo Components			O Sim Name	Full Name / Synonym	O Formula		
Other Comp Lists		<add pure<="" th=""><th>H2CO3</th><th>Carbonic H2CO3</th><th></th><th>~</th><th></th></add>	H2CO3	Carbonic H2CO3		~	
			H2CR2O7 H2CRO4	Dichromic(VI) H2Cr2O7 Chromic(VI) H2CrO4			
		-Substitute->	H2MNO4	Manganic(VI) H2MnO4			
			H2MOO4 H2O	Molybdenic(VI) H2MoC Water H2O)4		
	f i i i i i i i i i i i i i i i i i i i	Remove>	H2O2	HYDROGEN H2O2			
			H2RHVIO4 H2RUVIO4	H2O4Rh H2O4Ru			
		Sort List	H252O3	Thiosulfuric H2S2O3			
			H25204 H25206	Dithionous H2S2O4 Dithionic H2S2O6			
	Vie	w Component	H252O8	Peroxodisulfuric(VII) H2	25208		
			H25506 H25E2O7	Selenic(VI) H2SeO4.SeC	03	~	
< >			Redox				
Selected Compon	ent by Type Component Databases]					J
Delete		Name Comp	onent List - 1				

You can either double-click the highlighted name or use the <u>Add Pure</u> button.

Add Component List View: C Add Component V Library Components Traditional OLI Electrolyte	Selected Components		-Components Av Match H	railable in the Library	Addition	nal Databank
> Hypo Components			Sim Name	Full Name / Synonym	O Formula	
····· Other Comp Lists		<add pure<="" th=""><th>H2CO3 H2CR2O7 H2CR04</th><th>Carbonic H2CO3 Dichromic(VI) H2Cr2O7 Chromic(VI) H2CrO4</th><th>7</th><th>^</th></add>	H2CO3 H2CR2O7 H2CR04	Carbonic H2CO3 Dichromic(VI) H2Cr2O7 Chromic(VI) H2CrO4	7	^
		<-Substitute->	H2MNO4 H2MOO4	Manganic(VI) H2MnO4 Molybdenic(VI) H2MnO4	4 D4	
			H2O2	HYDROGEN H2O2		
		Remove>	H2RHVIO4	H2O4Rh H2O4Ru		
			H252O3	Thiosulfuric H2S2O3		
		Sort List	H252O4	Dithionous H2S2O4		
			H2S2O6	Dithionic H2S2O6		
		Line Orene and	H2S2O8	Peroxodisulfuric(VII) H	25208	
		view Component	H25500	Selenic(VI) H2SeO4 Sel	03	
			H2SEO3	Selenious(IV) H2SeO3		×
< >			Redox			
Selected Compone	ent by Type Component Databa	ases				
Delete		Name Comp	onent List - 1			

If you wish to remove a component from the selected list, highlight it and use the *Replace* button.

Entering Components

We will now add the remaining components for this example

Using the same procedure, add the following components.

- NH3
- CO2
- SO2
- HCL
- H2SO4

The input should look like this:

Å Component List View: (Component List - 1				
Add Component	Selected Components		-Components Avail	able in the Library	Databank
 Library Components Traditional 	H2O NH3 CO2		Match		Additional Databank
> Hypo Components	SO2 HCL		O Sim Name (Full Name / Synonym	OFormula
Other Comp Lists	H2S04	<add pure<="" th=""><th>ACENITRILE</th><th>Acetonitrile</th><th>CH3CN</th></add>	ACENITRILE	Acetonitrile	CH3CN
			ACET2	Acetic	C4H8O4
			ACETACID	Acetic	СНЗСООН
		<-Substitute->	ACETALDEHD	Ethanal	C2H4O
			ACETUNE	Acetone	CHSCOCHS
		Demoura	ACEITLENE	Acetylene	C2R2 C22H36
		Remove>	ACIDSOU	acid	C10H16
			ACIDSO2	acid	C14H20
		Sort List	ACIDSO3	acid	C18H28
		John Elst	ACIDSO4	acid	C23H32
			ACIDSO5	acid	C25H34
		View Component	ACRYL2	Acrylic	C6H8O4
			ACRYLONTRL	2-Propenenitrile	C3H3N
			ADGLUC	alpha-D-Glucose	C6H12O6
< >			Redox		
Selected Compone	ent by Type Component Datab	ases			J
Delete		Name Comp	onent List - 1		

The component selection has been completed. We are now ready to start building our process.

Creating the Simulation

Click the "X" to close the component selection.

A Component List View:	Component List - 1					×
Add Component Library Components Traditional OLI Electrolyte 	Selected Components H2O NH3 CO2 SO2		Match	able in the Library—	Additurel Databank	
Other Comp Lists	H2SO4	<add pure<="" th=""><th>ACENITRILE ACET2 ACETACID</th><th>Acetonitrile Acetic Acetic</th><th>CH3CN C4H804 CH3COOH</th><th></th></add>	ACENITRILE ACET2 ACETACID	Acetonitrile Acetic Acetic	CH3CN C4H804 CH3COOH	
		<-Substitute->	ACETALDEHD ACETONE ACETYLENE ACIDSO0	Ethanal Acetone Acetylene Acid	C2H4O CH3COCH3 C2H2 C22H36	
		Sort List	ACIDSO1 ACIDSO2 ACIDSO3 ACIDSO4	acid acid acid	C10H16 C14H20 C18H28 C23H32	
	Vie	ew Component	ACIDSO5 ACRYL2 ACRYLONTRL	acid Acrylic 2-Propenenitrile	C25H34 C6H8O4 C3H3N	
< >			Redox	alpha-D-Glucose	Conizoo	
Selected Compone	ent by Type ∫Component Databases	Name Comp	opent List - 1			
Delete		wane Compo	Shent List - T			

This brings you back to the fluid package page.

Propert <u>y</u> Package Selection Kabadi-Danner Lee-Kesler-Plocker Margules MBWR NBS Steam NRTL OLI_Electrolyte Peng-Robinson PR-Twu PRSV REFPROP	 Property Package Filter All Types EOSs Activity Models Chao Seader Models Vapour Pressure Models Electrolyte Models Miscellaneous Types 	Initialize Electrolytes Environment Phase Option Vapour Organic Solid Solid Aqueous Redox Options Included Redox Subsystem Selection		
Component List Selection View Electrolyte Reaction in Trace Window Component List - 1 View O AQ MSE				
Set Up Parameters Delete Name	Parameters2 Binary Coeffs Sta Basis-1 Property Pkg	b Test Phase Order Rxns Tabular Notes OLL_Electrolyte Edit Properties		

If you need to modify the chemistry, particularly solid phase selections, you will need to click the

Initialize Electrolytes Environment button. For this example, we do not need to do this. Once again, click the "X" in the upper right-hand corner.

Simulation Ba	sis Manager					Flows	heet - Fluid Pk	a Associations	
Basis-1	NC: 6	PP: OLI_Electrol	yte	View Add			Flowsheet Case (Main	Fluid Pkg To n) Bas	Use is-1
				Delete Copy					
				View Users.		Fluid Pl	Nefault Fluid Pl	kg Basis-1 ub-FlowSheets	
	-	[Export		0 U	se Default Flu se Parent's Fl	iid Pkg 🔲 Includ Iuid Pkg	Column
Components Enter PVT E	Fluid Pkgs	Hypotheticals	Hypo C Ente	orrelation Sets er Regression En	Oil Ma	anager nt	Reactions	Component Map. Enter Simulation I	Ser Properties

This brings us back to the Simulation Basis Manager dialog. For this example, please click the

Enter Simulation Environment button

Several things will occur. The most important action is that the internal OLI Chemistry Model is created in memory and can now be used.

Figure 1. Simulation window (move the palate if it is obscuring the window)

We will now create a small process using a mixer with two inlet streams. The user is expected to know how to create the process. Please do not enter any conditions for the inlet streams currently.

Selecting the mixer

From the tools pallet we will Click on the **mixer** and then click on the workspace.

The workspace now looks like this:

NoName.usc - UniSim Design R491	- 🗆 X
File Edit Simulation Flowsheet PFD Tools Window Help	Environment: Case (Main)
	Mode: Steady State
bi dau Fi bi dù ⊕ A ∞ 47 ↔ 88	→ S Default Colou + A ×
	$\Rightarrow \Rightarrow$
МІХ-100	
	- E E - E
	T C C
	♦
Required Info : MIX-100 Requires a feed stream Required Info : MIX-100 Requires a product stream Saving case C:\Us	ers\JAMES~1.BER\AppData\Local\Temp\AutoRecovery save of NoName (0x251350).ahc
Completed.	
Solve Pass Comple	sed
	Balance Tool Errors 🔺 🗸

The mixer is given a default name of MIX-100. You can change it later if you wish. The block is also colored RED. This indicates that the block does not have sufficient information to calculate.

We need to create two inlet streams.

Click on the Material Streams arrows and place them on the workspace.

	Case (Main)	
lou	🕂 🖰	
	->-	
	n o	

The material streams arrows are colored blue. Place two (2) material streams arrows on the workspace.

Double-Click the Mixer Block. This will open another window.

INIX-100		
Design	Name MIX-100	
Connections		
Parameters		
User Variables		
Notes		
	Inlets	Outlet
	< Stream >>	~
		Fluid Package
		Basis-1
	Ignore Selected Feed Stream(s)	
Design Rating	g Worksheet Dynamics Cost	
Delete	Requires a feed s	tream Ignored

Locate the Inlets area and click in the first cell. Select stream "1". Repeat for stream "2".

I MIX-100		
Design	Name MIX-100	
Connections Parameters User Variables Notes		
	Inlets	Outlet Fluid Package Basis-1
Design Ratin	g Worksheet Dynamics Cost Requires a produ	ct stream

Locate the *Outlet* box and enter the number "3". This completes this block.

₱ MIX-100		
Design	Name MIX-100	
Connections		
Parameters		\backslash
User Variables	>	≻ →
Notes		
	Inlets	Outlet
	1 -	8
	2	Fluid Package
		Basis-1
	Ignore Selected Feed Stream(s))
Design Rating	Worksheet Dynamics Cost	,'
Delete	Not Solve	d 🗌 Ignored

The status bar should be yellow. This indicates that the block has not been calculated.

Click the **x** in the upper right-hand corner to close this dialog.

This is the partially completed process. The streams are light blue to indicate that they have not been calculated.

Entering Stream Composition Data

Double-click stream "1". This will open a new window.

↑1		- • ×
Worksheet Conditions Properties Composition K Value Electrolytes User Variables Notes Cost Parameters	Stream Name Vapour / Phase Fraction [Mol. Basis] Temperature [C] Pressure [kPa] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole] Molar Entropy [kJ/kgmole-C] Heat Flow [kJ/h] Liq Vol Flow @Std Cond [m3/h] Fluid Package Phase Option <	1 <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> Basis-1 Multiphase</empty></empty></empty></empty></empty></empty></empty></empty>
Worksheet Atta	chments Dynamics Unknown Flow Rate	
Delete	Define from Other Stream	+ +

This is the standard input window for a stream. We will now add our conditions.

- Locate the cell for Temperature (C) and enter 40
- Locate the cell for Pressure (kPa) and enter 101.3

Worksheet Stream Name 1 Conditions Vapour / Phase Fraction [Mol. Basis] <empty> Properties Pressure [KPa] 101.3 Composition Molar Flow [kg/h] (empty>) K Value Mass Flow [kg/h] <empty> Electrolytes Molar Enthalpy [k]/kgmole] <empty> User Variables Molar Enthalpy [k]/kgmole-C] <empty> Notes Hoal ar Entropy [k]/kgmole-C] <empty> Liq Vol Flow @Std Cond [m3/h] <empty> Fluid Package Phase Option Multiphase <</empty></empty></empty></empty></empty></empty>	1		
Phase Option Multiphase	Worksheet Conditions Properties Composition K Value Electrolytes User Variables Notes Cost Parameters	Stream Name Vapour / Phase Fraction [Mol. Basis] Temperature [C] Pressure [kPa] Molar Flow [kg/n] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [k//kgmole] Molar Enthopy [k//kgmole-C] Heat Flow [kJ/h] Liq Vol Flow @Std Cond [m3/h] Eluid Parkana	1 <empty> 40.00 101.3 <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <empty> <emp< th=""></emp<></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>
		Fluid Package Phase Option	<empty> Basis-1 Multiphase</empty>
		Unknown Flow Rate	
Unknown Flow Rate	Delete	Define from Other Stream	_ <u> </u>

Now click the Composition line

1		
Worksheet Conditions Properties Composition K Value Electrolytes User Variables Notes Cost Parameters	H2O NH3 CO2 SO2 HCL H2CO3 H2CO3 H2CO3 HCL02 H2CO3 HCL02 HCL02 HCL02 HCL02 HCL02 HCL02 HCL02 HCL02 HCL02 HCL02 HC02 HC02 HC02 HC02 HC02 HC02 HC02 HC	Mole Fractions Cempty>
	Total	<empty> 0.00000 roperties Basis</empty>
Worksheet Atta	chments Dynamics Unknown Flow Rat	e
Delete	Define from Other Stre	eam 🗢 🖨

We can now enter our composition for our components. In this case, we want to use mole flow rather than mole fractions.

Click the **Basis**... button

This will open a new window

峯 Stream: 1	×
Compositional Basis Mole Fractions Mass Fractions Mole Flows Mass Flows	

Select the *Mole Flows* radio button. Click the *x* when done.

Now begin entering the value for H2O of 55.51

→ 1			
Worksheet Conditions Properties Composition K Value Electrolytes User Variables Notes Cost Parameters	H20 H10 S02 HCL H2504 H2C03 H2C03 H2C03 HCL 1H20 HCL 1H20 HCL 2H20 HCL 3H20 KCL 3H20 KCL 3H20 KCL KCL KCL H20 KCL H20 KCL H20 H20 KCL KCL H20 KCL H20 KCL H20 KCL H20 KCL KCL KCL KCL KCL KCL KCL KCL	Motar Flows 55.51 <empty> <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	kgmole/h
	Total Edit Edit F	0.00000 kgmole/h Properties Basis.	
Worksheet Atta	chments Dynamics Unknown Flow Ra	te	l
Delete	Define from Other Str	eam 🗲	•

Once you hit enter it will prompt you to a new window to finish entering the composition of the stream.

🔰 Input Composit	ion for Stream: 1	×
H20 NH3 C02 S02 HCL H2S04 H2C03 H2S03	CompMoleFlow 55.510 <empty> <</empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	Composition Basis Mole Fractions Mass Fractions Mole Flows Mass Flows
HCL.1H20 HCL.2H20 HCL.3H20 NH42C03 NH42C03.1H20 NH42S205	<empty> <empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty></empty>	Composition Controls
NH42SO3 NH42SO3.1H2O NH42SO4 NH43CO32	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	Cancel
Equalize Composition	Total 55.510 kgmole/ł	ОК

This will display the composition data entry dialog. Complete the following data entry in mole flow units:

- H2O 55.51
- NH3 1.0
- CO2 0.1
- SO2 0.1

The remaining values can be zero.

	43	
	CompMoleFlow	Composition Basis
H2O	55.510	Mala Eractiona
NH3	1.0000	O mole Practions
CO2	0.10000	Mass Fractions
S02	0.10000	
HCL	<empty></empty>	<u>M</u> ole Flows
H2SO4	<empty></empty>	Mass Flows
H2CO3	<empty></empty>	
H2SO3	<empty></empty>	
HCL.1H2O	<empty></empty>	
HCL.2H2O	<empty></empty>	
HCL.3H2O	<empty></empty>	Composition Controls
NH42CO3	<empty></empty>	-
NH42CO3.1H2O	<empty></empty>	E <u>r</u> ase
NH42S2O5	<empty></empty>	
NH42SO3	<empty></empty>	Normali <u>z</u> e
NH42SO3.1H2O	<empty></empty>	
NH42SO4	<empty></empty>	
NH43CO32	<empty> Y</empty>	Cancel
Faualiza Compositio	Total 56 710 kamole/	

Click the **OK** button.

		Molar Flows
Worksheet	H20	55,510
···· Conditions	NH3	1.0000
Properties	C02	0,10000
Composition	S02	0.10000
Composition	HCL	0.00000
K value	H2SO4	0.00000
Electrolytes	H2CO3	0.00000
— User Variables	H2SO3	0.00000
Notes	HCL.1H2O	0.00000
Cost Parameters	HCL.2H2O	0.00000
oost i arametero	HCL.3H2O	0.00000
	Total Edit Edit P	56.71000 kgmole/h Properties Basis
Worksheet Atta	chments Dynamics	

The status bar should turn green. This indicates that the program has already converged the stream. We can see some useful information at this time.

Click on the *Electrolytes* line.

≯ 1	₽ ₽	
Worksheet Conditions Properties Composition K Value Electrolytes	Phase © Aqueous © Organic Solid Vapor Property Property	
User Variables Notes Cost Parameters	pH Osmotic Pressure [kPa] Ionic Strength [kgmol/kg] Heat Capacity [k/kgmole-C] Viscosity [cP] Ideal Std Liquid Density [kg/m3] Specific Elec Conductivity [S/m] Molar Elec Conductivity [S-m2/kgmole] Thermal Conductivity [W/m-K] Surface Tension [dyne/cm]	9.340 2771 7.925e-006 74.66 0.6802 999.1 5.143 0.0000 0.6251 68.88
Worksheet Attac	hments Dynamics	
Delete	Define from Other Stream	+ +

The pH of this solution is approximately 9.3. We also provide additional information. You can also explore other buttons such as composition, to see more information about our report.

→ 1						-	, • <mark>×</mark>
Worksheet Conditions Properties Composition K Value	Phase Aqueous Organic Solid Vapor	True Species In Properties Composition	fo <u>C</u> onc. Basis Molar Mass				
···· Electrolytes ···· User Variables	True Species	Mole Fraction	Molar Flow [kgmole/h]	Molality [kgmol/kg]	Molarity [kgmole/m3]	Activity Coeff.	^
···· Notes	H2OAQ	0.979288	54.857	5.551e-002	55.21	1.002	
Cost Parameters	CO2AQ	0.000000	2.1721e-005	2.198e-008	2.186e-005	0.9821	
	H2SO4AQ	0.000000	0.00000	0.0000	0.0000	0.0000	
	HCLAQ	0.000000	0.00000	0.0000	0.0000	0.0000	
	NH3AQ	0.002593	0.14526	1.470e-004	0.1462	1.036	
	NH40HAQ	0.008799	0.49288	4.987e-004	0.4961	1.044	
	SO2AQ	0.000000	7.6309e-012	7.722e-015	7.681e-012	0.9300	
	SO3AQ	0.000000	0.00000	0.0000	0.0000	0.0000	
	CLION	0.000000	0.00000	0.0000	0.0000	0.0000	
	CO3ION	0.000396	2.2169e-002	2.243e-005	2.231e-002	0.1412	
	H30ION	0.000000	6.5945e-010	6.673e-013	6.637e-010	0.6861	×
Worksheet Attac	hments Dynam	iics					
			OK				
Delete	Define from	n Other Stream					+ +

Figure 2 Notice that we have dragged the width of the dialog to the right.

Click on the \boldsymbol{x} to close this dialog.

We will now repeat the steps for stream "2" but with different compositions. Please enter the following composition for stream "2" in mole flow.

Temperature	25	С
Pressure	101.3	kPa
H2O	55.51	
HCI	0.1	
H2SO4	1.0	

Click the *Electrolytes* line to see the pH.

* 2		
Worksheet Conditions Properties Composition K Value Electrolytes User Variables Notes Cost Parameters	Phase True Species Info Organic Orporties Osolid Composition Property Property PH Osmotic Pressure [kPa] Ionic Strength [kgmol/kg] Heat Capacity [k]/kgmole-C] Viscosity [cP] Ideal Std Liquid Density [kg/m3] Specific Elec Conductivity [S-m2/kgmole] Thermal Conductivity [W/m-k] Surface Tension [dyne/cm] Surface Tension [dyne/cm]	-8.112e-002 6582 2.514e-005 73.80 1.126 1036 41.58 0.0000 0.5844 72.94
Worksheet Attac	hments Dynamics	
Delete	Define from Other Stream	+ +

Click the *x* to close the dialog.

Unisim Design will attempt to converge the process as you create it. As you close the final dialog box for data entry you will see that the output stream "3" is "Blue" which means it has converged.

NoName.usc - UniSim Design R491		-	- 0 ×
File Edit Simulation Flowsheet PFD Tools Window Help			
ŮŮВӘ《╨Ѱ∞╚▤♥◊◊•• 4		Environment: Case (I Mode: Steady	Main) / State
C PFD - Case (Main)			Case (Main) 🛛 💌
여여51 0000 ⊙ A ∞ 4 ↔ 品		→ → Default Colou	+ 6 ×
1 2 MIX-100	3		
PFD 1			A
	Soling Handwalloof_ Soling Hirlo Soling Hirlo Soling Hirlo Soling Journel Soling ProductBlock_J Soling Fast Completed Saving case Cr\Deers\JMME3-1.8ER\AppGata\Local\Temp\AutoRecovery save Completed	of NoName (0x251350).ahc	· · · · · · · · · · · · · · · · · · ·
	n •	Balance Tool	▲ ▼

Reviewing the output

Double-Click stream "3"

• 3				5	(- 0 💌
Worksheet	Stream Name	3	3_Elec	Vapour Phase	Aqueous Phase	
Conditions	Vapour / Phase Fraction [Mol. Basis]	0.0006	0.0006	0.0006	0.9994	
Conditions	Temperature [C]	36.99	36.99	36.99	36.99	
Properties	Pressure [kPa]	101.3	101.3	101.3	101.3	
···· Composition	Molar Flow [kgmole/h]	114.3	114.3	6.574e-002	114.3	
- K Value	Mass Flow [kg/h]	2130	2130	2.857	2127	
Electrolytes	Std Ideal Liq Vol Flow [m3/h]	2.092	2.092	2.395e-003	2.089	
User Variables	Molar Enthalpy [kJ/kgmole]	-2.865e+005	-2.865e+005	-3.787e+005	-2.864e+005	
···· Notes	Molar Entropy [kJ/kgmole-C]	72.66	72.66	215.4	72.57	
Cost Parameters	Heat Flow [kJ/h]	-3.275e+007	-3.275e+007	-2.490e+004	-3.272e+007	
	Liq Vol Flow @Std Cond [m3/h]	2.092	2.092	2.395e-003	2.089	
	Fluid Package	Basis-1	Basis-1	Basis-1	Basis-1	
	Phase Option	Multiphase	Multiphase	Multiphase	Multiphase	
	JI					1
Worksheet Atta	chments Dynamics	OK				
Delete	Define from Other Stream					+ +

The converged process temperature is approximately 37.0 °C.

Click on the *Electrolytes* line.

→ 3		- • ×
Worksheet Conditions Properties Composition K Value Electrolytes	Phase Aqueous Organic Solid Vapor Property	
User Variables Notes Cost Parameters	pH Osmotic Pressure [kPa] lonic Strength [kgmol/kg] Heat Capacity [k/kgmole-C] Viscosity [cP] Ideal Std Liquid Density [kg/m3] Specific Elec Conductivity [S/m] Molar Elec Conductivity [S-m2/kgmole] Thermal Conductivity [W/m-K] Surface Tension [dyne/cm]	0.8681 3013 1.488e-005 74.67 0.7624 1018 14.69 0.0000 0.6162 71.72
Worksheet Atta	chments Dynamics OK	
Delete	Define from Other Stream	\$

The converged pH is 0.87 indicating that some acid/base chemistry has taken place. What about the equilibrium compositions that have been calculated?

Click the *Composition* radio button at the top of the dialog. This creates a scrollable area where you can see the actual true-species composition.

→ 3							
Worksheet Conditions Properties Composition K Value	Phase Aqueous Organic Solid Vapor	True Species Inf	io <u>C</u> onc. Basis Molar Mass				
 Electrolytes User Variables 	True Species	Mole Fraction	Molar Flow [kgmole/h]	Molality [kgmol/kg]	Molarity [kgmole/m3]	Activity Coeff.	^
Notes	H2OAQ	0.976725	110.61	5.551e-002	55.17	1.002	
Cost Parameters	CO2AQ	0.000369	4.1734e-002	2.094e-005	2.082e-002	1.087	
	H2SO4AQ	0.000000	2.8532e-007	1.432e-010	1.423e-007	1.129	
	HCLAQ	0.000000	8.9278e-010	4.480e-013	4.453e-010	0.7357	
	NH3AQ	0.000000	1.2435e-009	6.240e-013	6.202e-010	1.039	
	NH40HAQ	0.000000	4.4457e-009	2.231e-012	2.217e-009	1.027	
	SO2AQ	0.000764	8.6542e-002	4.343e-005	4.316e-002	0.9311	
	SO3AQ	0.000000	1.3335e-020	6.692e-024	6.651e-021	1.123	
	CLION	0.000883	0.10000	5.018e-005	4.988e-002	0.6901	
	CO3ION	0.000000	7.1770e-016	3.602e-019	3.580e-016	9.905e-002	
	H30ION	0.003510	0.39744	1.995e-004	0.1982	0.6809	
	HC03ION	0.000000	2.8632e-007	1.437e-010	1.428e-007	0.5837	
		0 000000	0.0007- 002	5 01/2 006	1 002~ 002	0.6001	
Worksheet Attac	hments Dynam	iics					,
				ОК			
Delete	Define fror	n Other Stream					+ +

Click on the Composition line at the left.

→ 3							×
Washahaat		Mole Fractions	Mole Fractions Elec	Vapour Phase	Aqueous Phase		~
worksneet	H2O	0.979881	0.979881	0.061316	0.980410		- · ·
Conditions	NH3	0.008747	0.008747	0.000000	0.008752		
Properties	CO2	0.000875	0.000875	0.886339	0.000365		
Composition	S02	0.000875	0.000875	0.052346	0.000845		
K Value	HCL	0.000875	0.000875	0.000000	0.000875		
K value	H2SO4	0.000000	0.000000	0.000000	0.000000		
Electrolytes	H2CO3	0.000000	0.000000	0.000000	0.000000		
···· User Variables	H2S03	0.000000	0.000000	0.000000	0.000000		
··· Notes	HCL.1H20	0.000000	0.000000	0.000000	0.000000		
Cost Parameters	HCL.2H20	0.000000	0.000000	0.000000	0.000000		
	NH42002	0.00000	0.00000	0.000000	0.000000		
	NH42CO3 1H20	0.000000	0.000000	0.000000	0.000000		
	NH42C03.1120	0.000000	0.000000	0.000000	0.000000	N	- v
	1111420200		-	(JAAAAAAA)	()	13	
	Total	perties Basis					
Worksheet Atta	chments Dynamics Define from Other Strea	m	OK			¢	`

This displays the composition on an apparent-species basis. However, the true-species vapor composition is also reported in this section. Use the scroll bars to scroll to the right to see the vapor composition (we have dragged the window to the right to see more information)

Here we see the mole fraction basis for the vapor phase composition. You can change the basis by clicking the **Basis...** button and looking at mole flow for example.

The actual mole flows are reported as well as the total mole flow for the phase.

Mandan hard		Molar Flows	Molar Flows Elec	Vapour Phase	Aqueous Phase	
worksneet	H2O	112.02	112.02	4.0308e-003	112.02	
Conditions	NH3	1.0000	1.0000	5.2729e-012	1.0000	
Properties	CO2	0.10000	0.10000	5.8266e-002	4.1734e-002	
Composition	S02	0.10000	0.10000	3.4411e-003	9.6559e-002	
Value	HCL	0.10000	0.10000	4.8866e-010	0.10000	
K value	H2SO4	0.00000	3.7521e-021	3.7521e-021	0.00000	
Electrolytes	H2CO3	0.00000	0.00000	0.00000	0.00000	
User Variables	H2SO3	0.00000	0.00000	0.00000	0.00000	
Notes	HCL.1H2O	0.00000	0.00000	0.00000	0.00000	
Cost Parameters	HCL.2H2O	0.00000	0.00000	0.00000	0.00000	
cost runnictors	HCL.3H2O	0.00000	0.00000	0.00000	0.00000	
	NH42CO3	0.00000	0.00000	0.00000	0.00000	
	NH42CO3.1H2O	0.00000	0.00000	0.00000	0.00000	
	Total	operties Basis				

This now completes the getting started guide. It is strongly recommended that you save your file at this time.