

INTRODUCTION TO OLI Engine for Aspen Hysys

think simulation

getting the chemistry right

Introduction to OLI Engine for Aspen Hysys

© 1997-2024 OLI Systems, Inc.

The enclosed materials are provided to the lessees, selected individuals and agents of OLI Systems, Inc. The material may not be duplicated or otherwise provided to any entity without the expressed permission of OLI Systems, Inc.

OLI Engine for Aspen Hysys

Contact Information

Visit the Contact OLI Systems page at <u>https://www.olisystems.com/techsupport</u> to submit general inquiries, contact Technical Support, or search for an address and phone number.

If you need to contact Support, you can submit an online request via OLI Support Center: <u>https://support.olisystems.com</u>

Other useful links and resources are: Product Downloads: http://downloads.olisystems.com/

Disclaimer

This manual was produced using the OLI Engine 12.0.0.6 for Aspen Hysys 14

As time progresses, new data and refinements to existing data sets can result in values that you obtain being slightly different than what is presented in this manual. This is a natural progress and cannot be avoided. When large systematic changes to the software occur, this manual will be updated.

Trademarks

Aspen and Aspen HYSYS are trademarks of Aspen Technology, Cambridge, Massachusetts.

OLI, OLI Systems and the "OLI Engine 12.x for Aspen HYSYS" are trademarks of OLI Systems, Inc. Parsippany, New Jersey, 07054

Table of Contents

DISCLAIMER	2
TRADEMARKS	2
TABLE OF CONTENTS	3
OVERVIEW	4
Assumptions	4
Application Using the OLI Engine for Aspen HYSYS	5 5
Entering the Chemistry and fluid packages Selecting Fluid Packages Entering Components	8
Creating the Simulation Selecting the mixer Entering Stream Composition Data	16 20
Reviewing the output	

Overview

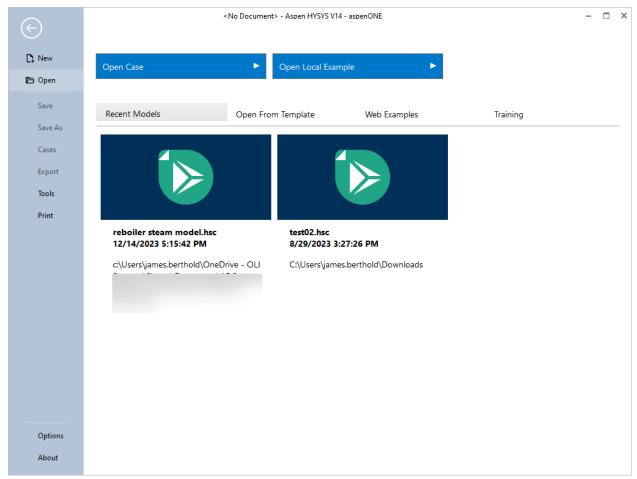
The OLI Engine for Aspen HYSYS interface greatly enhances Aspen HYSYS' capability to model electrolyte systems. A rigorous and self-consistent thermodynamic framework is employed to tame the mathematically stiff equations commonly found in electrolyte systems. Also, a database of over 10,000 components is available.

The OLI model is available as a property set within Aspen HYSYS. This "Getting Started" guide will show you how to create the electrolyte chemistry for a simple case and then create a simple flowsheet in Aspen HYSYS.

Assumptions

The following assumptions are made for this guide:

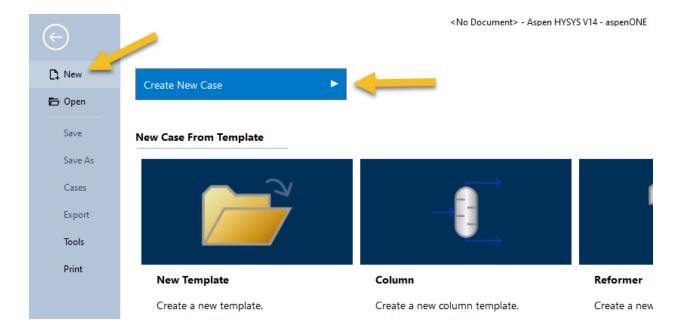
- 1. Aspen HYSYS is currently installed and running on your computer.
- 2. The license manager for Aspen HYSYS is currently set up.
- 3. The OLI Engine for Aspen HYSYS product has been installed.
- 4. The OLI security model is running.
- 5. Aspen HYSYS V14 is being used.
- 6. The user is expected to know how to run Aspen HYSYS.


Application

This application will take an acid stream and titrate it against a basic stream to see the resultant pH changes. Some heat and vapor are expected to be evolved.

Using the OLI Engine for Aspen HYSYS

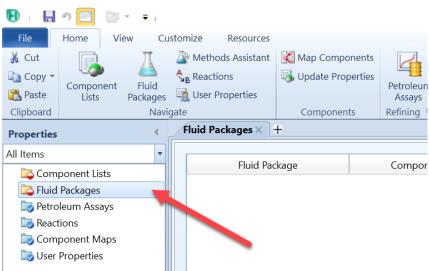
Start Aspen Hysys in the normal manner. A splash screen will display and then disappear.



This will now display the Aspen HYSYS development environment.

Entering the Chemistry and fluid packages

Select New and then Create New Case


🕞 i 🔚 🤊 🚍 📴 🔹 🕫		U	ntitled - Asper	n HYSYS V14 - aspenONE	N		 _		×
K Cut Copy → Component Lists Component Package	A _B Reactions	1	Petroleum Assays Refining 12			Search Aspen Kno			
Properties Complexity Simulation Image: Safety Analysis Image: Safety Analysis Image: Safety Analysis	Add Add		package		esponsiver	ness: 5] 100%		- I	

This will bring up the Simulation Environment.

Selecting Fluid Packages

OLI recommends starting with adding a fluid package.

Select Fluid Packages

There are no fluid packages currently defined for this simulation. We need to add a package.

Click the **Add** button

🕑 i 🔒 🤊 🚍 📴 📼		Untitled	- Aspen HYSYS V12.1 - asp	DenONE	×
File Home View C	ustomize Resources				Search Aspen Knowledge 👂 🔕 🔞
		Properties Petroleum Assays	theticals Manager ert O ve Duplicates Mana potheticals	Definition	e Fluid Package Is * PVT Laboratory Measurements PVT Data
Properties <	Fluid Packages × +				•
All Items *					
Component Lists	Fluid Package	Component List	Property Package	Status	
🔁 Fluid Packages					
Petroleum Assays Reactions					
Component Maps					
Contraction User Properties					
	L 🚽				
	Add	Edit C	ору	Delete	
Properties	Import	Export			
\Box^{\Box}_{\Box} Simulation		Exportin			
Safety Analysis	Messages				÷ ∓ ×
Energy Analysis	Required Info : Fluid Packages Sel Required Info : Components Empt				T
Uncergy readysis	required into a components Empl	y component list			Trace Messages
Ŧ					
				Respons	iveness: 5 100% 🕞 🛛 🕀

Scroll down the window to find OLI_Electrolyte

	:kage: Basi			
Set Up	Binary Coe	ffs	StabTest	Phase Order
Packag	е Туре:	HYSY	s	
Prope	rty Package	Selec	tion —	
Gray	son Streed			
IAPV	VS-IF97			
Kabo	di-Danner			
Lee-	Kesler-Plock	er		
MBV	VR			
NBS	Steam			
NRT	1			
OLL	Electrolyte			
Peng	-Robinson			
PR-T	wu			
PRSV	/			=
Sour	PR			
Sour	SRK			
Sour	Water			
SRK				
SRK-	Twu			
1	m (Sulfur R			*

Highlight the object **OLI_Electrolyte**.

The window changes to display some OLI specific options. It is beyond the scope of this document to explain those options currently. Notice that the name of the component list is **Component List -1**.

👂 i 🔒 🤊 📄 🦉 🔹 🕫 i		Untitled - Aspen HVSYS V14 - aspenONE	- 🗆 ×
File Home View C	ustomize Resources		Search Aspen Knowledge 👂 📀 📀
	AB Reactions Image: Det constraints Pet constraints Image: Ima	Image: Projection Image: Projec	id Package PVT Laboratory Measurements PVT Data
Properties <	Fluid Package: Basis-1 × +		
All Items	Set Up Binary Coeffs StabTest Phase Order T Package Type: HYSYS Property Package Selection Grayson Streed Hydrogen Package HAWXS-IF97 Kobadi-Danner Lee-Keise-Placker MBWR NBS Steam NRTL OLL Electrolyte Peng-Robinson PR-Twu PRSV Sour PR Sour SRK Sour Water Twu SRK	abular Notes Component List Selection Component List - 1 [HYSYS D Initialize Electrolytes Environment Phase Option Solid Option Vapour Organic Solid Aqueous Redox Options Included Included Redox Subsystem Selection Hypo Estimation Method © Cavett Lee-Kesler View Electrolyte Reaction in Trace Window View Electrolyte Reaction in Trace Window	Atabanksj View
Properties		Property Pkg Empty component list	
□-{□ Simulation		"	•
Safety Analysis	Messages Required Info : Components Empty component list Required Info : Component List - 1 [HYSYS Databanks Required Info : Fluid Packages Select property pack] Empty compon	* ₫ ×
		Respo	nsiveness: 5 100% \ominus ——— 🕀

You have two options to see the component list. Either click the Component List in the navigator

(options 1) or click the View Button next to the list (option 2)

& Conjection France Matchool Additate Map Components Provident P	🖸 i 🔒 🤊 📄 🗁 🗉 i		Untitled - Aspen HYSYS V12.1 - aspenONE		×
Image: Section:	File Home View C	ustomize Resources		Search Aspen Knowledge 👂 🔎	۲
Alt homs Alt ho	Component Fluid Baste Lists Package	Se Reactions Update Properties Petroleum Assays		tions * PVT Laboratory ons Measurements	
Image: Component List Selection Projection	Properties <	Fluid Package: Basis-1 × +			Ŧ
Image: Compose Mays Image: Compose	Component Lists Component Lists Discrete Section	Package Type: HYSYS	Component List Selection Component List - 1 [H	IYSYS Databanks] • View 2	Î
Constantion Constantin Constantin Constantin Constantin Constantin	De Rections Component Maps User Properties	Conjunction Strengt Address Table Address Table Address Table Address Table Address Table Address Table Address Address	Phase Option Solid Option Vegent @ Exclude All Solids @ Organic [:] Solid @ Austron @ Solid Solid @ Reader Options Included [:] Holded [:] Redee Solesystem Selection Hype Estimation Method [:]		E.
Interry Analysis Interry Analysis Interry Analysis Interry Analysis Interry Analysis Required Info L Components - Empty component list Integration of the Understand Fluid package and data is inmailed.			Property Pkg Empty component list		
Inergy Analysis Messages Versage Versages Versage	Safety Analysis	*	m	•	
require uno componens a unity componentiat v updated fluid package and data is invalid.	A		updated fluid package xml data is invalid		4 ×
		Required Into : Components Empty component list	Updated fluid package xml data is invalid		

Here we are choosing Option 1, In the tree-view, click on *Component Lists*.

Click the small arrow to expand the list. This will expand the list to display all the component lists. Select **Component List -1**

Home View Cu	stomize Resources									Se	earch Aspen Knowledge	2	۵
ut opy - aste component Lists Navig			Petroleum Assays Refining 12	 Hypothetical Convert Remove Dup Hypotheti 	licates M	Oil anager	Convert to	* Associate Fluid Package Definitions * Options	PVT Laboratory Measurements PVT Data				
erties <	Component List View	: Component List - 1 [HY	SYS Databank	s] × +									
Component Lists Component List - 1 Fluid Packages	Source Databank: HYS						Select: Search for:	Pure Components	 Filter: Search 		All Families -		
Petroleum Assays Reactions	Component	Туре	G	roup			Sim	ulation Name	Full Name / Synonyr	. (Formula	-	
Component Maps User Properties						ld.	3	Methane	rui Nuite / Synonyi	" C1	CH4		
oser Properties								Ethane		C2	C2H6		
								Propane		C3	C3H8		
					Repla	ce		i-Butane		i-C4	C4H10		
								n-Butane		n-C4	C4H10		
								i-Pentane		i-C5	C5H12		
					Remo	ve		n-Pentane		n-C5	C5H12		
								n-Hexane		C6	C6H14		
								n-Heptane		C7	C7H16		
								n-Octane		C8	C8H18		
Properties								n-Nonane		C9	C9H20		
Simulation								n-Decane		C10	C10H22	*	
Safety Analysis	Status	Empty compos	aant liet										
	Messages						61	xml data is invalid					•
Energy Analysis		ents Empty componer											

Entering Components

A new basis set has been defined. We can now specify the components.

Aspen HYSYS categorizes the components according to function and type. OLI Components are no different. Expand the drop-down list from the **Select** box.

Select:	Pure Components	Filter:	All Families				
earch for: Search by: Full Name/Synonym							
Simulat	ion Name	Full Name / Synonym	Formula	*			
	Methane	C	1 CH4				
	Ethane	c	2 C2H6				
	Propane	C	3 C3H8				
	i-Butane	i-C4	4 C4H10				

This will display several options:

Select:	Pure Components	-	Filter:	4
Search for:	Pure Components OLI (Aqueous) OLI (MSE)	4	Search by:	F
Simula	tic Hypothetical Solid		ame / Synonym	
	Methane			C1
	Ethane			C2

For this example, we will use OLI (MSE)

🔒 🤊 🔁 📴 🐨 🔹 I				Unt	itled - Asper	HYSYS V12.1 - a	spenONE				
Home View C	ustomize Resources								Search Aspen Knowledge	م	۵
ut opy v aste loard		Map Components Update Properties Components	Petroleum	 Hypotheticals Manager Convert Remove Duplicates Hypotheticals 	Oil Manager	Convert to Refining Assay	Associate Fluid Pac Definitions - Options	kage PVT Laboratory Measurements PVT Data			
erties <	Component List View	Component List - 1 [HY	SYS Databank	s] × +							
:ms •											(
Component Lists	Source Databank: HYS	/S				Select:	OLI (MSE)	•			
Fluid Packages	Component	Туре	G	roup		Search f	or:		Additional Database		
Petroleum Assays											
Reactions Component Maps							Simulation Name	Full Name / Synonym	Formula	*	
User Properties					< Add		ACENITRILE	Acet	onitrile CH3CN		
							ACET2	Acetic_acid,	_dimer C4H8O4		
							ACETACID	Acet	tic_acid CH3COOH		
					Replace		ACETALDEHD	1	Ethanal C2H4O		
							ACETONE	A	cetone CH3COCH3		
						_	ACETYLENE	Ace	etylene C2H2		
					lemove		ACIDSO0	Acid_soluble	_oil_(0) C22H36		
							ACIDSO1	acid_soluble_oil_	light C10H16		
							ACIDSO2	acid_soluble_oil2	20-30% C14H20		
							ACIDSO3	acid_soluble_oil6	50-70% C18H28		
roperties							ACIDSO4	acid_soluble_oil	_>70% C23H32		
imulation							ACIDSO5	acid_soluble_oil	_>80% C25H34	Ŧ	
	Status	Empty compos	ent list								
afety Analysis	Messages										
nergy Analysis	Required Info : Compor			-	Update	d fluid packa	ge xml data is inva ge xml data is inva	alid.			_
*	Required Info : Compor	ient List - 1 [HYSYS Datab	anks] Empty	component list	Update	d fluid packa	ge xml data is inva	alid.			

We can now begin to select our components from the OLI supplied species. You can either scroll down the rather large list or enter your species into the **Search For:** box.

Enter the species H2O into the Search For: box.

You can see the components list scrolls to the species. If the species highlighted is the correct species, click the *Add* button.

Component Ruid Peter Lists Package National Nam	La Une Properties	plate Properties P	troleum & Convert	ficah Managar Di Displication Managar Displication	Canvetta Bi	Ameriate Pluid Package Definitions * Options	PVT Laboratory Measurementik PVT Outa			
roperties C	Component List View: Comp	onent List - 1 (HYSY)	5 Dutabankoj × [+							
Reactions		Select		-		1	0			
California Batoleum Assays Reactions	Component	Type	Group		Search for	ation Name	Full Name / Synonym	Additional Database Formula		
Component Maps				1 4.55		HRODE	Carbonic acid	NICOS		
						H208207	Dichronic(VI)_acid	H20/207		
						HICKOM	Overve(V), and	HECKOA	11	
				Explain		H2MNO4	Manganic(VI)_acid	H2MvO4		
						H2M004	Molybdenc(VI),acid	H2MbO4	1	
						Hao	Water	H2D		
				Retorue		H202	HYDROGEN, PERCHEDE	1002		
						H2RHVIC4	H2048h			
						H2RLVIO4	H2O4Ru			
						H25208	Thiosuffaric_acid	H25200		
						H25204	Dithionous_acid	H25204		
Properties						H25206	Othionic_acid	#25206	1	

As you type, the component list changes to search for the species. As you can see the species H2O is highlighted. Also, there is the species H2O2 (peroxide) which has a similar formula. Select the species you need.

You will notice that the component list no longer displays H2O in the available box. Rather it now appears in the Selected components.

) 🔚 🤊 😑 🗁 👻 🗧 File Home View Cu	stomize Resources								-		Se	arch Aspen Knowledge	Q	
Copy - Copy - Paste ipboard Component Lists Navig:	Methods Assistant S Reactions User Properties ate	Map Components Update Properties Components Component List - 1 [Hy	Petroleum Assays Refining 5	Hypoth	uplicates	Oil Manager	Convert to Refining Assay	Det 🖹 Op	finitions *	PVT Laboratory Measurements PVT Data				
operties <		component est i firi	515 Dutabanic											
Component Lists Component List - 1 Fluid Packages	Source Databank: HYS	/S							OLI (MSE)	•	_			U
Basis-1	Component	Туре	G	roup			Search	for:	H20			Additional Database		
Reactions	H2	20 Electrolyte Compo	nent											
Component Maps								Simulat	ion Name	Full Name / Syno	nym	Formula	<u></u>	
o User Properties						< Add			H2CO3	c	arbonic_acid	H2CO3		
									H2CR2O7	Dichro	omic(VI)_acid	H2Cr2O7	E	
									H2CRO4	Chro	omic(VI)_acid	H2CrO4	dditional Database Formula H2Cr03 H2Cr04 H2Mn04 H2M	
					R	eplace			H2MNO4	Mang	anic(VI)_acid	H2MnO4		
									H2MOO4	Molybd	enic(VI)_acid	H2MoO4		
									H2O2	HYDROGE	N_PEROXIDE	H2O2		
				Otie Otie Cenverto PVT Laboratory Remove Duplicate: Additional Database PVT Data VI Select: Oli (MSE) Select: Oli (MSE) Additional Database Select: Oli (MSE) Full Name / Synonym Search for: H2O H2C03 H2CR207 Dichromic(VI)_acid H2C02 H2CR04 Chromic(VI)_acid H2C03 Replace H2MNO4 Mangaric(VI)_acid H2MoO4 H2D02 HVDGEN_PEROXIDE H02 H2S2O3 Thiosufuric_acid H2S2O3 H2S2O4 H2S2O8 Peroxodisulfuric(VIII)_acid H2S2O8 H2S2O8 H2S2O8 Peroxodisulfuric(VIII)_acid H2S2O8 H2S2O8 Updated Third package m1 data is invalid; Invalid; H2S2O8 H2S2O8										
							Search Aspen Knowledge Search Aspen Knowledge Oil Search Aspen Knowledge Oil PVT Laboratory Weil Laboratory Measurements Oil PVT Data							
Properties									H2S2O6	D	ithionic_acid	H2S2O6		
Simulation									H2S2O8	Peroxodisulf	uric(VII)_acid	H2S2O8	*	
Safety Analysis	Status	OK												
	Messages													-
Energy Analysis						Update	d fluid pack	ige xml	data is invalid.					_

If you wish to remove a component from the selected list, highlight it and use the *Replace* button.

Using the same procedure, add the following components¹.

- NH3
- CO2
- SO2
- HCL
- H2SO4

The input should look like this:

¹ You can also just enter the name in the search box, if you are sure, it is the right name, and then press the Enter key to automatically select it. This saves some time.

i 🔒 🤊 📑 🔤 👻 🔻 i				Untitled	Aspen HYSYS V1	2.1 - aspenONE			-	
ile Home View Co	ustomize Resources							Search Aspen Knowledge	Q	۵
Cut Copy + Paste pboard	Subser Properties	Map Components Update Properties Components Refini	leum ays Remove D	icals Manager Duplicates Ma heticals	Oil Conver nager Refining	t to	ge PVT Laboratory Measurements PVT Data			
operties <	Component List View: C	Component List - 1 [HYSYS Da	atabanks] × +							
tems Component Lists Component List - 1 Fluid Packages	Source Databank: HYSYS				Se	elect: OLI (MSE)	-			()
Basis-1	Component	Туре	Group		Se	arch for:		Additional Database		
Petroleum Assays	H2C	Electrolyte Component			_					
Reactions	NH3	B Electrolyte Component				Simulation Name	Full Name / Synonym	Formula	-	
o User Properties	CO2	2 Electrolyte Component		< Ad	±	ACENITRILE	Acetonitril	e CH3CN		
	SO2	2 Electrolyte Component				ACET2	Acetic_acid,_dime	er C4H8O4		
	HCL	Electrolyte Component				ACETACID	Acetic_aci	d CH3COOH		
	H2SO4	Electrolyte Component		Repla	:e	ACETALDEHD	Ethana	al C2H4O		
						ACETONE	Aceton	e CH3COCH3		
						ACETYLENE	Acetylen	e C2H2		
				Remo	/e	ACIDSO0	Acid_soluble_oil_(0	D) C22H36		
						ACIDSO1	acid_soluble_oilligh	nt C10H16		
						ACIDSO2	acid_soluble_oil20-309	% C14H20		
						ACIDSO3	acid_soluble_oil60-709	% C18H28		
Properties						ACIDSO4	acid_soluble_oil>709			
Simulation						ACIDSO5	acid_soluble_oil>809	% C25H34	*	
Safety Analysis	Statuc	٥ĸ								
Energy Analysis	Messages			u	pdated fluid p	ackage xml data is inval ackage xml data is inval ackage xml data is inval	id.			•

The component selection has been completed. We are now ready to start building our process.

Creating the Simulation

Click on the Simulation section

) 🔜 🤊 📃 🖾 🔹 💷				onder	cu Aspenni	IYSYS V12.1 - asp	EIIOINE	_			
File Home View Cu	ustomize Resources								Search Aspen Knowledge	2	\$
Copy - Paste lipboard	AB Reactions	A	troleum ssays	ticals Manager Duplicates theticals	Oil Manager F	Convert to	Associate Fluid Package Definitions * ?) Options	PVT Laboratory Measurements PVT Data			
operties <	Component List View: Co										
l Items +											G
Component Lists	Source Databank: HYSYS					Select:	OLI (MSE)	•			
Basis-1	Component	Туре	Group			Search for	:		Additional Database		
Retroleum Assays	H2O	Electrolyte Component									
Reactions	NH3	Electrolyte Component				Si	nulation Name	Full Name / Synonym	Formula	*	
User Properties	CO2	Electrolyte Component		< /	Add		ACENITRILE	Acetonitril	e CH3CN		
	SO2	Electrolyte Component					ACET2	Acetic_acid,_dime	r C4H8O4		
	HCL	Electrolyte Component					ACETACID	Acetic_acio	d CH3COOH		
	H2SO4	Electrolyte Component		Rep	place		ACETALDEHD	Ethana	I C2H4O		
							ACETONE	Aceton	e CH3COCH3		
							ACETYLENE	Acetylen	e C2H2		
				Ren	move		ACIDSO0	Acid_soluble_oil_(0) C22H36		
							ACIDSO1	acid_soluble_oilligh	t C10H16		
							ACIDSO2	acid_soluble_oil20-309	6 C14H20		
							ACIDSO3	acid_soluble_oil60-709	6 C18H28		
Properties				D.			ACIDSO4	acid_soluble_oil>709	6 C23H32		
Simulation							ACIDSO5	acid_soluble_oil>809	6 C25H34	*	
	Status	OK.									
Safety Analysis											
Energy Analysis	Messages				Updated	fluid package	xml data is invalid. xml data is invalid. xml data is invalid.				

As you click this button, Aspen HYSYS temporarily passes control to the OLI software to create the electrolyte model. Progress messages can be seen in the status line at the bottom of the window as well as in the summary box. After a few moments, the standard ASPEN HYSYS development window is displayed.

関 i 🔒 🤊 🎨 📃 🐷 🗸 🗸	Unitled - Aspen HYSYS V11 - aspen ONE Powelleet - CD ×
File Home Economics	Dynamics Plant Data Equation Oriented View Customize Resources Flowsheet/Modify Format
👗 Cut 🛛 si 🔹 🔮	🛛 Utility Manager 🔽 Active 📰 🚰 🗹 Model 📈 🗠 Case Studies 🚔 Stream Analysis - 🎉 Pressure Relief 🔗 Emissions
	Adjust Manager 📢 On Hold Workbook, Reports 🔄 Flowsheet Compression Zata Fits 🔐 Equipment Design - 🎇 BLOWDOWN and Depressuring -
	Fluid Packages sinulation 1 Soher 1 Summaries Analysis Analysis Safety
Simulation 4	
All Items	Capital:USD_Utilities:USD_Viear U Energy Savings:MW (%) U Exchangers - Unknown: 0 OK: 0 Risk: 0 🕑 V
Contraction with the second se	
🔯 UnitOps	Model Palette 🗰 🖬 1
Constreams	Streams Flowsheets
Contraction Equipment Design	
Nodel Analysis	
Cata Tables	
Case Studies	
🗔 Data Fits	
Plant Data	
	· [
Properties	
- Simulation	
Safety Analysis	Messages
S Energy Analysis	Updated Fluid package xml data is invalid. Updated Fluid package xml data is invalid. Updated Fluid package xml data is invalid. Updated Fluid package xml data is invalid.
	The PIPESIM Enhanced Link Extension is not registered. Please register it to gain access to this operation.
Solver (Main) - Ready View Converge	ence Responsiveness: 5 25% \odot

Figure 1. Simulation window (move the palate if it is obscuring the window)

We will now create a small process using a mixer with two inlet streams. The user is expected to know how to create the process. Please do not enter any conditions for the inlet streams at this time.

In this example, we will "Dock" the palate to the right side of the environment.

Selecting the mixer

From the tools pallet we will Click on the mixer and then click on the workspace.

-	Model Palette	≁ # ×
i ^	Views	Streams Flowsheets
		P
	All	
	Dynamics & Control	✐₽₽
	External Model	
	Heat Transfer	<u>747</u>
	Manipulator	
	Piping & Hydraulics	
	Pressure Changer	±~ ± \$

The workspace now looks like this:

B = B = 86 = = ≠	Untitled - Aspen HYSYS V12.1 - aspenONE	Flowsheet – 🗆 🗙
File Home Economics	Dynamics Plant Data Equation Oriented View Customize Resource	
لل Cut Copy → ∰ Unit Sets Paste →		🗠 Case Studies 🚔 Stream Analysis 👻 🌆 Pressure Relief 💦 Emissions 👔 🎒
Simulation <	Capital:USD_Utilities:USD/Year OEnergy Savings:MW (%) 💽 Exchangers - Unknown: 0 OK: 0 Risk: 0 💽
All Items 🔹	Flowsheet Case (Main) - Solver Active × +	▼ Model Palette
© Workbook ▷ Qurkbook ▷ Churtops ▷ Stream Analysis ▷ Equipment Design ▷ Model Analysis ▷ Data Tables ▷ Strip Charts ▷ Case Studies ▷ Data Fits ▷ Data Tits ▷ Data Tits ▷ Data Al	MIX-100	Views Streams Piowsheets Image: Stream S
Properties		Changer Cn(A)
C Simulation	<u> </u>	Reactor
a - Salety Analysis	Messages	• 4 x
Strengy Analysis	Required Info : MIX-100 Requires a feed stream Required Info : MIX-100 Requires a product stream Optional Info : MIX-100 Not Solved	Operation. Saving case C:\users\JAMES~1.8ER\AppData\Local\Temp\AutoRecovery save of NoName (0x170368).ahc Completed. Flowsheet Object MIX-100 is created on the Main flowsheet
olver (Main) - Ready View Converg	ence	Responsiveness: 5 115% 👄 🛛 🕀 🔛

The mixer is given a default name of MIX-100. You can change it later if you wish. The block is also colored RED. This indicates that the block does not have sufficient information to calculate.

We need to create two inlet streams.

Click on the Material Streams arrows and place them on the workspace.

	-		1
			- 1
-	20	~	- 1
	-		_ 1

The material streams arrows are colored blue. Place two (2) material streams arrows on the workspace.

/Flowsheet Case (Main) - Solver Active × +	Model Palette	↓ 4 ×
	Views	Streams Flowsheets
		2
	All	€>+€¢
1	Dynamics & Control	∯₽₽₽
2 MIX-100	External Mode	⊨ •₩•€•
-	Heat Transfer	~ ? fJ
	Manipulator	
	Piping & Hydraulics	
	Pressure Changer	±// 🖽 🕰
۷ ۲	Reactor	Cn(A)

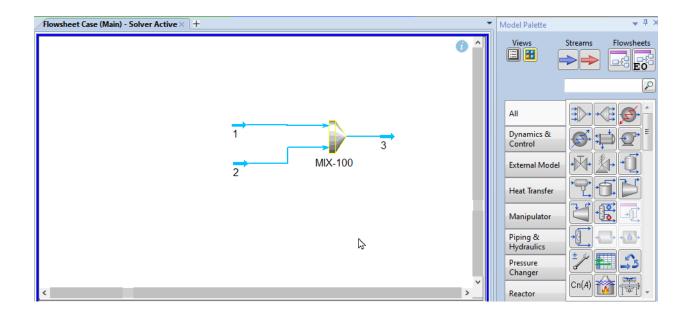
Double-Click the Mixer Block. This will open another window.

Mixer: MIX-100		13
Design Rating	Worksheet Dynamics	
Design Connections Parameters User Variables Notes	Name MIX-100	
Delete	Requires a feed stream	gnored

Locate the Inlets area and click in the first cell. Select stream "1". Repeat for stream "2".

xer: MIX-	100				- 0 :
Design	Rating	Worksheet	Dynamics		
Desi Connecto Parameter User Vau Notes	tions ters	Inlets	Name	MIX-100	
[Delete			Requires a product stream] Ignored

Figure 2. Selecting stream "2". Stream "1" has already been selected.


Locate the *Outlet* box and enter the number "3". This completes this block.

Ν	/lixer: MIX-100				- E 13
	Design Rating	Worksheet Dynamics			
	Design	Name	MIX-100		
н	Connections				
	Parameters				
L	User Variables				
	Notes	inlets << Stream		Outlet 3 Fluid Package Basis-1	
	Delete		Not S	Solved	Ignored

The status bar should be yellow. This indicates that the block has not been calculated.

Click the *x* in the upper right-hand corner to close this dialog.

This is the partially completed process. The streams are light-blue to indicate that they have not been calculated.

Entering Stream Composition Data

Double-click stream "1". This will open a new window.

	Stream Name	1	1 Elec	
Conditions	Vapour / Phase Fraction	<empty></empty>	<empty></empty>	
Properties	Temperature [C]	<empty></empty>	<empty></empty>	
Composition	Pressure [kPa]	<empty></empty>	<empty></empty>	
Oil & Gas Feed	Molar Flow [kgmole/h]	<empty></empty>	<empty></empty>	
Petroleum Assay K Value	Mass Flow [kg/h]	<empty></empty>	<empty></empty>	
Electrolytes	Std Ideal Liq Vol Flow [m3/h]	<empty></empty>	<empty></empty>	
User Variables	Molar Enthalpy [kJ/kgmole]	<empty></empty>	<empty></empty>	
Notes	Molar Entropy [kJ/kgmole-C]	<empty></empty>	<empty></empty>	
Cost Parameters Normalized Yields Emissions	Heat Flow [kJ/h]	<empty></empty>	<empty></empty>	
	Liq Vol Flow @Std Cond [m3/h]	<empty></empty>	<empty></empty>	
Emissions	Fluid Package	Basis-1		
	Utility Type			

This is the standard input window for a stream. We will now add our conditions.

- Locate the cell for Temperature (C) and enter 40
- Locate the cell for Pressure (kPa) and enter 101.3

orksheet Attachm	ents Dynamics			
Worksheet	Stream Name	1	1_Elec	
Conditions	Vapour / Phase Fraction	<empty></empty>	<empty></empty>	
Properties	Temperature [C]	40.00	40.00	
Composition	Pressure [kPa]	101.3	101.3	
Oil & Gas Feed Petroleum Assay	Molar Flow [kgmole/h]	<empty></empty>	<empty></empty>	
Petroleum Assay K Value Electrolytes User Variables Notes Cost Parameters Normalized Yields ▷ Emissions	Mass Flow [kg/h]	<empty></empty>	<empty></empty>	
	Std Ideal Liq Vol Flow [m3/h]	<empty></empty>	<empty></empty>	
	Molar Enthalpy [kJ/kgmole]	<empty></empty>	<empty></empty>	
	Molar Entropy [kJ/kgmole-C]	<empty></empty>	<empty></empty>	
	Heat Flow [kJ/h]	<empty></empty>	<empty></empty>	
	Liq Vol Flow @Std Cond [m3/h]	<empty></empty>	<empty></empty>	
Emissions	Fluid Package	Basis-1		
	Utility Type			
	Co-			

Now click the *Composition* line

Worksheet		Mole Fractions	Mole Fractions Elec	
Conditions	H2O	<empty></empty>	<empty></empty>	
Properties	NH3	<empty></empty>	<empty></empty>	
Composition	CO2	<empty></empty>	<empty></empty>	
Oil & Gas Feod	SO2	<empty></empty>	<empty></empty>	
Petroleum Assay	HCL	<empty></empty>	<empty></empty>	
K Value Electrolytes	H2SO4	<empty></empty>	<empty></empty>	
User Variables	H2CO3	<empty></empty>	<empty></empty>	
Notes	H2SO3	<empty></empty>	<empty></empty>	
Cost Parameters	HNH2CO2	<empty></empty>	<empty></empty>	
Normalized Yields	NH42CO3	<empty></empty>	<empty></empty>	
Emissions	NH42SO3	<empty></empty>	<empty></empty>	
	NH42SO3.1H2O	<empty></empty>	<empty></empty>	
	NH42SO4	<empty></empty>	<empty></empty>	
	NH43HSO42	<empty></empty>	<empty></empty>	
	NH44H2CO33	<empty></empty>	<empty></empty>	
	NH4CL	<empty></empty>	<empty></empty>	
	NH4CLB	<empty></empty>	<empty></empty>	
	NH4CO2NH2	<empty></empty>	<empty></empty>	
	NH4H3SO42	<empty></empty>	<empty></empty>	
	NH4HCO3	<empty></empty>	<empty></empty>	
	NH4HSO3	<empty></empty>	<empty></empty>	
	NH4HSO4	<empty></empty>	<empty></empty>	
	NH4OH	<empty></empty>	<empty></empty>	
	Total	0.0000	00	
	Edit View	Properties Basis		

We can now enter our composition for our components. In this case, we want to use mole flow rather than mole fractions.

Click the **Basis**... button

Worksheet		Mole Fractions	Mole Fractions Elec	
Conditions	H2O	<empty></empty>	<empty></empty>	
Properties	NH3	<empty></empty>	<empty></empty>	
Composition	CO2	<empty></empty>	<empty></empty>	
Oil & Gas Feed	SO2	<empty></empty>	<empty></empty>	
Petroleum Assay	HCL	<empty></empty>	<empty></empty>	
K Value Electrolytes	H2SO4	<empty></empty>	<empty></empty>	
User Variables	H2CO3	<empty></empty>	<empty></empty>	
Notes	H2SO3	<empty></empty>	<empty></empty>	
Cost Parameters	HNH2CO2	<empty></empty>	<empty></empty>	
Normalized Yields	NH42CO3	<empty></empty>	<empty></empty>	
Emissions	NH42SO3	<empty></empty>	<empty></empty>	
	NH42SO3.1H2O	<empty></empty>	<empty></empty>	
	NH42SO4	<empty></empty>	<empty></empty>	
	NH43HSO42	<empty></empty>	<empty></empty>	
	NH44H2CO33	<empty></empty>	<empty></empty>	
	NH4CL	<empty></empty>	<empty></empty>	
	NH4CLB	<empty></empty>	<empty></empty>	
	NH4CO2NH2	<empty></empty>	<empty></empty>	
	NH4H3SO42	<empty></empty>	<empty></empty>	
	NH4HCO3	<empty></empty>	<empty></empty>	
	NH4HSO3	<empty></empty>	<empty></empty>	
	NH4HSO4	<empty></empty>	<empty></empty>	
	NH4OH	<empty></empty>	<empty></empty>	
	Total	0.000	00	
	Edit View Prop	erties		
	Edit View Prop	Change Compositional Bas		

This will open a new window

된 Stream: Materi	—	\times
Compositional Basis		
O Mole Fractions		
O Mass Fractions		
Mole Flows		
O Mass Flows		
	6	

Select the *Mole Flows* radio button. Click the *x* when done.

Now begin entering the value for H2O of 55.51

Worksheet		Molar Flows	Molar Flows_Elec	
Conditions	H2O kan	nole/h 🔻 55.51	_ <empty></empty>	
Properties	NH3	wempty>	<empty></empty>	
Composition	CO2	<empty></empty>	<empty></empty>	
Oil & Gas Feed	SO2	<empty></empty>	<empty></empty>	
Petroleum Assay K Value	HCL	<empty></empty>	<empty></empty>	
Electrolytes	H2SO4	<empty></empty>	<empty></empty>	
User Variables	H2CO3	<empty></empty>	<empty></empty>	
Notes	H2SO3	<empty></empty>	<empty></empty>	
Cost Parameters	HNH2CO2	<empty></empty>	<empty></empty>	
Normalized Yields	NH42CO3	<empty></empty>	<empty></empty>	
Emissions	NH42SO3	<empty></empty>	<empty></empty>	
	NH42SO3.1H2O	<empty></empty>	<empty></empty>	
	NH42SO4	<empty></empty>	<empty></empty>	
	NH43HSO42	<empty></empty>	<empty></empty>	
	NH44H2CO33	<empty></empty>	<empty></empty>	
	NH4CL	<empty></empty>	<empty></empty>	
	NH4CLB	<empty></empty>	<empty></empty>	
	NH4CO2NH2	<empty></empty>	<empty></empty>	
	NH4H3SO42	<empty></empty>	<empty></empty>	
	NH4HCO3	<empty></empty>	<empty></empty>	
	Tota	al 0.00000 kgmole/h		

Once you hit enter it will prompt you to a new window to finish entering the composition of the stream. A fly-out unit selection box appears near the composition. Use the defaults at this time.

	Comp Mole Flow		Composition Basis
kgmole/h 🔻	55.51		Mole Fractions
NH3	<empty></empty>		Mass Fractions
CO2	<empty></empty>		
SO2	<empty></empty>		C Liq Volume Fractions
HCL	<empty></empty>		Mole Flows
H2SO4	<empty></empty>		
H2CO3	<empty></empty>		Mass Flows
H2SO3	cempty>		C Lig Volume Flows
HNH2CO2	<empty></empty>	=	C Elq Volume Hows
NH42CO3	<empty></empty>		
NH42SO3	<empty></empty>		Composition Controls
NH42SO3.1H2O	<empty></empty>		Erase
NH42SO4	<empty></empty>		Erase
NH43HSO42	<empty></empty>		
NH44H2CO33	<empty></empty>		Equalize Composition
NH4CL	<empty></empty>		
NH4CLB	<empty></empty>		
NH4CO2NH2	<empty></empty>		
NH4H3SO42	<empty></empty>		
NH4HCO3	<empty></empty>	-	
		Ť	Cancel
			Cancer
Normalize	Total 55.5100 kgm	ole/h	ОК

Press the **<Enter>** key to continue.

	CompMoleFlow		Composition Basis
H2O	55.5100		Mole Fractions
NH3	0.0000		Mass Fractions
CO2	0.0000		
SO2	0.0000		Liq Volume Fractions
HCL	0.0000		Mole Flows
H2SO4	0.0000		
H2CO3	0.0000		Mass Flows
H2SO3	0.0000	=	C Lig Volume Flows
HNH2CO2	0.0000	-	C Lq foldine fibility
NH42CO3	0.0000		
NH42SO3	0.0000		Composition Controls
NH42SO3.1H2O	0.0000		Erase
NH42SO4	0.0000		Liase
NH43HSO42	0.0000		
NH44H2CO33	0.0000		Equalize Composition
NH4CL	0.0000		
NH4CLB	0.0000		
NH4CO2NH2	0.0000		
NH4H3SO42	0.0000		
NH4HCO3	0.0000	*	
			Cancel
Normalize	Total 55.5100 kgmo	le/h	ОК

This will display the composition data entry dialog. Complete the following data entry in mole flow units:

- H2O 55.51
- NH3 1.0
- CO2 0.1
- SO2 0.1

The remaining values can be zero.

NH31.0000CO20.1000SO20.1000HCL <empty>H2SO4<empty>H2CO3<empty>HNH2CO2<empty>NH42CO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO3<empty>NH42SO4<empty>NH4CLB<empty>NH4CLB<empty>NH4CLB<empty>NH4CB3<empty>NH4H3SO42<empty>NH4CO3<empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>		Comp M	ole Flow		Composition Basis
CO2 0.1000 SO2 0.1000 HCL <empty> H2SO4 <empty> H2CO3 <empty> HNH2CO2 <empty> NH42CO3 <empty> NH42SO3.1H2O <empty> NH42SO3.1H2O <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3.1H2O <empty> NH44H2CO33 <empty> NH44H2CO33 <empty> NH4CLB <empty> NH4CO2NH2 <empty> NH4HO3 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	H2O		55.5100	~	O Mole Fractions
0.1000 Iliq Volume Fractions HCL <empty> H2SO4 <empty> H2CO3 <empty> H2SO3 <empty> HNH2CO2 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO4 <empty> NH42SO3 <empty> NH42SO4 <empty> NH43HSO42 <empty> NH4CL <empty> NH4CL <empty> NH4CO2NH2 <empty> NH4HDO3 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	NH3		1.0000		Mass Fractions
SO2 0.1000 HCL <empty> H2SO3 <empty> H2SO3 <empty> HNH2CO2 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO4 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO4 <empty> NH44H2CO33 <empty> NH4CL <empty> NH4CD3 <empty> NH4HD3 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	CO2		0.1000		
H2SO4 < cempty> H2SO3 < cempty> H2SO3 < cempty> HNH2CO2 < cempty> NH42SO3 < cempty> NH42SO3 < cempty> NH42SO3 < cempty> NH42SO3 < cempty> NH42SO4 < cempty> NH42SO3 < cempty> NH42SO4 < cempty> NH42SO4 < cempty> NH42SO4 < cempty> NH42SO4 < cempty> NH42SO4 < cempty> NH44H2CO33 < cempty> NH4CL < cempty> NH4CL < cempty> NH4CD2NH2 < cempty> NH4CO2NH2 < cempty> NH4CO2NH2 < cempty> NH4HCO3 < cempty>	SO2		0.1000		Cliq Volume Fractions
H2CO3 < <empty> H2SO3 < <empty> HNH2CO2 < <empty> NH42SO3 < <empty> NH42SO3 < <empty> NH42SO3 < <empty> NH42SO3 < <empty> NH42SO4 < <empty> NH43SO42 < <empty> NH44H2CO33 <<empty> NH4CL < <empty> NH4CLB < <empty> NH4CO2NH2 < <empty> NH4CO2NH2 <<empty> NH4CO2NH2 <<empty> NH4CO2NH2 <<empty> NH4HCO3 <<empty> NH4HCO3 <<empty> Composition Controls Equalize Composition</empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	HCL		<empty></empty>		Mole Flows
NH2CO3 <empty> HNH2CO2 <empty> NH42CO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO4 <empty> NH44H2CO33 <empty> NH44H2CO33 <empty> NH44H2CO33 <empty> NH4CLB <empty> NH4CO2NH2 <empty> NH4H033 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	H2SO4		<empty></empty>		
HNH2CO2 <empty> NH42CO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO4 <empty> NH44SO42 <empty> NH44H2CO33 <empty> NH4CLB <empty> NH4CO2NH2 <empty> NH4CO3 <empty> NH4HCO3 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	H2CO3		<empty></empty>		Mass Flows
HNH2CO2 <empty> NH42CO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO3 <empty> NH42SO4 <empty> NH43HSO42 <empty> NH44H2CO33 <empty> NH4CL <empty> NH4CL <empty> NH4C203H2 <empty> NH4HSO42 <empty> NH4HC02NH2 <empty> NH4HC03 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	H2SO3		<empty></empty>		C Lig Volume Flows
NH42SO3 <empty> NH42SO3.1H2O <empty> NH42SO4 <empty> NH43HSO42 <empty> NH44H2C033 <empty> NH4CL <empty> NH4CLB <empty> NH4C02NH2 <empty> NH4H03 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	HNH2CO2		<empty></empty>	=	
NH42SO3 <empty> NH42SO3.1H2O <empty> NH42SO4 <empty> NH43SO42 <empty> NH44H2CO33 <empty> NH4CL <empty> NH4CO2NH2 <empty> NH4H2SO4 <empty> NH4CO2NH2 <empty> NH4H03 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	NH42CO3		<empty></empty>		
NH42S04 <empty> NH43HS042 <empty> NH43HS042 <empty> NH44H2C033 <empty> NH4CL <empty> NH4CLB <empty> NH4C02NH2 <empty> NH4H03 <empty></empty></empty></empty></empty></empty></empty></empty></empty>	NH42SO3		<empty></empty>		Composition Controls
NH42S04 <empty> NH43HS042 <empty> NH44H2C033 <empty> NH4CL <empty> NH4CLB <empty> NH4C02NH2 <empty> NH4H203 <empty> NH4C02NH2 <empty> NH4H03 <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	NH42SO3.1H2O		<empty></empty>		Fraço
NH44H2CO33 <empty> Equalize Composition NH4CL <empty> NH4CLB <empty> NH4CO2NH2 <empty> NH4H2SO42 <empty> NH4HCO3 <empty></empty></empty></empty></empty></empty></empty>	NH42SO4		<empty></empty>		Liase
NH4CLS <empty> NH4CLB <empty> NH4CO2NH2 <empty> NH4H2O3 <empty></empty></empty></empty></empty>	NH43HSO42		<empty></empty>		
NH4CLB <mpty> NH4CO2NH2 <mpty> NH4H3SO42 <mpty> NH4HCO3 <mpty> NH4HCO3 <mpty></mpty></mpty></mpty></mpty></mpty>	NH44H2CO33		<empty></empty>		Equalize Composition
NH4CO2NH2 <empty> NH4H3SO42 <empty> NH4HCO3 <empty></empty></empty></empty>	NH4CL		<empty></empty>		
NH4H3SO42 <empty> NH4HCO3 <empty></empty></empty>	NH4CLB		<empty></empty>	_	
NH4HCO3 <empty></empty>	NH4CO2NH2		<empty></empty>		
	NH4H3SO42		<empty></empty>		
Cancel	NH4HCO3		<empty></empty>	-	
	NUAUCO2				Cancel

Click the **OK** button.

The status bar should turn green. This indicates that the program has already converged the stream. We can see some useful information at this time.

Click on the *Electrolytes* line.

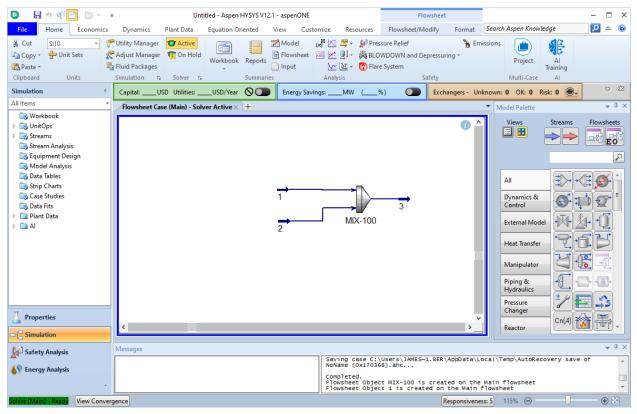
Vaterial Stream: 1			- E
Worksheet Attachme	ents Dynamics		
Worksheet Conditions Properties Composition Oil & Gas Feed	True Species Info Properties Composition Phase Aqu Soli	d	_
Petroleum Assay	рН	9.3400	
K Value PSD Property	Osmotic Pressure	2770.9 kPa	
Electrolytes	Ionic Strength	7.9249e-006 kgmol/kg	
User Variables Notes	Heat Capacity	74.660 kJ/kgmole-C	
Cost Parameters	Viscosity	0.68024 cP	
Normalized Yields	Specific Electrical Conductivity	5.1431 S/m	
Emissions	Molar Electrical Conductivity	0.00000 S-m2/kgmole	
		ОК	
Delete	Define from Stream	View Assay	+ +

The pH of this solution is approximately 9.3. We also provide additional information. You can also explore other buttons such as composition, to see more information about our report.

Worksheet Conditions Properties Composition	True Species Info Properties Composition	Phase Aqueous Solid	Conc. Basis Molar Mass			
Oil & Gas Feed Petroleum Assay K Value	True Species	Mole Fraction	Molar Flow [kgmole/h]	Molality [kgmol/kg]	Molarity [kgmole/m3]	
PSD Property	H2O	0.97929	54.8569	5.55081e-002	55.2144	
Electrolytes	CO2AQ	0.00000	2.17211e-005	2.19789e-008	2.18626e-005	
User Variables Notes	H2SO4AQ	0.00000	0.000000	0.000000	0.000000	
Cost Parameters	HCLAQ	0.00000	0.000000	0.000000	0.000000	
Normalized Yields	NH3AQ	0.00259	0.145256	1.46980e-004	0.146202	
Emissions	NH4OHAQ	0.00880	0.492882	4.98732e-004	0.496094	
	SO2AQ	0.00000	7.63093e-012	7.72151e-015	7.68065e-012	
	SO3AQ	0.00000	0.000000	0.000000	0.000000	
	CLION	0.00000	0.000000	0.000000	0.000000	
	CO3ION	0.00040	2.21690e-002	2.24322e-005	2.23135e-002	
	H3OION	0.00000	6.59448e-010	6.67276e-013	6.63745e-010	
	HCO3ION	0.00068	3.79443e-002	3.83947e-005	3.81915e-002	
	HSO3ION	0.00000	2.38525e-004	2.41356e-007	2.40079e-004	
	HSO4ION	0.00000	0.000000	0.000000	0.000000	
	NH2CO2ION	0.00071	3.98650e-002	4.03382e-005	4.01247e-002	
	NH4ION	0.00575	0.321997	3.25820e-004	0.324096	
	OHION	0.00000	8.87369e-005	8.97902e-008	8.93151e-005	
	\$205ION	0.00000	1.32696e-008	1.34271e-011	1.33561e-008	
			OK			

Click on the *x* to close this dialog.

We will now repeat the steps for stream "2" but with different compositions. Please enter the following composition for stream "2" in mole flow.


Temperature	25	С
Pressure	101.3	kPa
H2O	55.51	
HCI	0.1	
H2SO4	1.0	

Click the *Electrolytes* line to see the pH.

Vlaterial Stream: 2				- 6 %
Worksheet Attachme	nts Dynamics			0
Worksheet Conditions Properties Composition Oil & Gas Feed	True Species Info Properties Composition			
Petroleum Assay	pН	-0.0811]	
K Value PSD Property	Osmotic Pressure	6582.5 kPa		
Electrolytes	Ionic Strength	2.5144e-005 kgmol/kg		
User Variables Notes	Heat Capacity	73.805 kJ/kgmole-C		
Notes Cost Parameters	Viscosity	1.1257 cP		
Normalized Yields	Specific Electrical Conductivity	41.582 S/m		
Emissions	Molar Electrical Conductivity	0.00000 S-m2/kgmole		
			N	
		ОК		
Delete	Define from Stream	View Assay		>

Click the *x* to close the dialog.

Hysys will attempt to converge the process as you create it. As you close the final dialog box for data entry you will see that the output stream "3" is "Blue" which means it has converged.

Reviewing the output

Double-Click stream "3"

	Stream Name	3	3_Elec	Vapour Phase
Conditions	Vapour / Phase Fraction	0.0006	0.0006	0.0006
Properties	Temperature [C]	36.99	36.99	36.99
Composition	Pressure [kPa]	101.3	101.3	101.3
Oil & Gas Feed Petroleum Assav	Molar Flow [kgmole/h]	114.3	114.3	6.574e-002
K Value	Mass Flow [kg/h]	2130	2130	<empty></empty>
PSD Property	Std Ideal Liq Vol Flow [m3/h]	<empty></empty>	<empty></empty>	<empty></empty>
Electrolytes	Molar Enthalpy [kJ/kgmole]	-2.865e+005	-2.865e+005	-3.787e+005
User Variables	Molar Entropy [kJ/kgmole-C]	72.66	72.66	215.4
Notes	Heat Flow [kJ/h]	-3.275e+007	-3.275e+007	-2.490e+004
Cost Parameters Normalized Yields	Liq Vol Flow @Std Cond [m3/h]	<enpty></enpty>	<empty></empty>	<empty></empty>
Emissions	Fluid Package	Basis-1		
cimpatona	Utility Type			

The converged process temperature is approximately 37.0 °C.

Click on the *Electrolytes* line.

Material Stream: 3			
Worksheet Attachme	ents Dynamics		0
Worksheet Conditions Properties Composition Oil & Gas Feed	True Species Info Properties Composition	d	
Petroleum Assay	pН	0.8681	
K Value PSD Property	Osmotic Pressure		
Electrolytes	Ionic Strength		
User Variables Notes	Heat Capacity	-	
Cost Parameters	Viscosity		
Normalized Yields	Specific Electrical Conductivity		
Emissions			
			Þ
		ОК	
Delete	Define from Stream	View Assay	\

The converged pH is 0.87 indicating that some acid/base chemistry has taken place. What about the equilibrium compositions that have been calculated?

Click the *Composition* radio button at the top of the dialog. This creates a scrollable area where you can see the actual true-species composition.

Worksheet Conditions Properties Composition Oil & Gas Feed Petroleum Assay K Value	True Species Info – Properties Composition	Phase Aqueous Solid	Conc. Basis Molar Mass			
	True Species	Mole Fraction	Molar Flow [kgmole/h]	Molality [kgmol/kg]	Molarity [kgmole/m3]	
PSD Property	H2O	0.97673	110.609	5.55081e-002	55.1678	
Electrolytes	CO2AQ	0.00037	4.17338e-002	2.09438e-005	2.08154e-002	
User Variables Notes	H2SO4AQ	0.00000	2.85323e-007	1.43187e-010	1.42309e-007	
Cost Parameters	HCLAQ	0.00000	8.92784e-010	4.48037e-013	4.45290e-010	
Normalized Yields	NH3AQ	0.00000	1.24349e-009	6.24038e-013	6.20213e-010	
Emissions	NH4OHAQ	0.00000	4.44573e-009	2.23106e-012	2.21738e-009	
	SO2AQ	0.00076	8.65423e-002	4.34306e-005	4.31644e-002	
	SO3AQ	0.00000	1.33354e-020	6.69225e-024	6.65122e-021	
	CLION	0.00088	1.00000e-001	5.01843e-005	4.98766e-002	
	CO3ION	0.00000	7.17700e-016	3.60172e-019	3.57964e-016	
	H3OION	0.00351	0.397437	1.99451e-004	0.198228	
	HCO3ION	0.00000	2.86323e-007	1.43689e-010	1.42808e-007	
	HSO3ION	0.00009	9.99071e-003	5.01376e-006	4.98303e-003	
	HSO4ION	0.00629	0.712580	3.57603e-004	0.355411	
	NH2CO2ION	0.00000	31.46321e-015	7.34300e-019	7.29798e-016	
	NH4ION	0.00883	1.00000	5.01843e-004	0.498766	
	OHION	0.00000	5.40518e-013	2.71255e-016	2.69592e-013	
	S2O5ION	0.00000	1.29468e-005	6.49723e-009	6.45740e-006	
			OK			

Click on the *Composition* line at the left.

Worksheet		Mole Fractions	Mole Fractions_Elec	Vapour Phase	Aqueous Phase	
Conditions Properties Composition Oil & Gas Feed Petroleum Assay K Value PSD Property Electrolytes User Variables Notes	H2O	0.9799	0.9799	0.0613	0.9804	
	NH3	0.0087	0.0087	0.0000	0.0088	
	CO2	0.0009	0.0009	0.8863	0.0004	
	SO2	0.0009	0.0009	0.0523	0.0008	
	HCL	0.0009	0.0009	0.0000	0.0009	
	H2SO4	0.0000	0.0000	0.0000	0.0000	
	H2CO3	0.0000	0.0000	0.0000	0.0000	
	H2SO3	0.0000	0.0000	0.0000	0.0000	
	HCL.1H2O	0.0000	0.0000	0.0000	0.0000	
Cost Parameters	HCL2H2O	0.0000	0.0000	0.0000	0.0000	
Normalized Yields	HCL3H2O	0.0000	0.0000	0.0000	0.0000	
Emissions	NH42CO3	0.0000	0.0000	0.0000	0.0000	
	NH42CO3.1H2O	0.0000	0.0000	0.0000	0.0000	
	NH42S2O5	0.0000	0.0000	0.0000	0.0000	
	NH42SO3	0.0000	0.0000	0.0000	0.0000	
	NH42SO3.1H2O	0.0000	0.0000	0.0000	0.0000	
	NH42SO4	0.0000	0.0000	0.0000	0.0000	
	NH43CO32	0.0000	0.0000	0.0000	0.0000	
	NH43HSO42	0.0000	0.0000	0.0000	0.0000	
	NH44HCO3.1H2O	0.0000	0.0000	0.0000	0.0000	
	Total	1.0000 operties Basis	0			

This displays the composition on an apparent-species basis. However, the true-species vapor composition is also reported in this section. Use the scroll bars to scroll to the right to see the vapor composition (we have dragged the window to the right to see more information)

Here we see the mole fraction basis for the vapor phase composition. You can change the basis by clicking the **Basis...** button and looking at mole flow for example.

The actual mole flows are reported as well as the total mole flow for the phase.

Worksheet		Molar Flows	Molar Flows_Elec	Vapour Phase	Aqueous Phase	
Conditions Properties Composition Oil & Gas Feed Petroleum Assay K Value PSD Property Electrolytes	H2O	112.0200	112.0200	0.0040	112.0160	
	NH3	1.0000	1.0000	0.0000	1.0000	
	CO2	0.1000	0.1000	0.0583	0.0417	
	SO2	0.1000	0.1000	0.0034	0.0966	
	HCL	0.1000	0.1000	0.0000	0.1000	
	H2SO4	0.0000	0.0000	0.0000	0.0000	
	H2CO3	0.0000	0.0000	0.0000	0.0000	
User Variables	H2SO3	0.0000	0.0000	0.0000	0.0000	
Notes	HCL1H2O	0.0000	0.0000	0.0000	0.0000	
Cost Parameters	HCL2H2O	0.0000	0.0000	0.0000	0.0000	
Normalized Yields	HCL3H2O	0.0000	0.0000	0.0000	0.0000	
Emissions	NH42CO3	0.0000	0.0000	0.0000	0.0000	
	NH42CO3.1H2O	0.0000	0.0000	0.0000	0.0000	
	NH42S2O5	0.0000	0.0000	0.0000	0.0000	
	NH42SO3	0.0000	0.0000	0.0000	0.0000	
	NH42SO3.1H2O	0.0000	0.0000	0.0000	0.0000	
	NH42SO4	0.0000	0.0000	0.0000	0.0000	
	Total	114.32000 kgmole/h				

This now completes the getting started guide. It is strongly recommended that you save your file at this time.