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Introduction 

The objective of this task was to extend the Corrosion Analyzer to predict corrosion behavior 

under multiphase flow conditions. Further, the extension has been designed in such a way that 

the necessary parameters that characterize multiphase flow can be obtained from OLGA in cases 

when an aqueous film exists on the inner surface of pipeline. 

 

Background 

 

In general, the Corrosion Analyzer is a comprehensive program that allows users to predict 

corrosion potential, repassivation potential (i.e. to predict the presence of localized corrosion) 

and rates of general corrosion in multicomponent chemical systems. However, the existing 

version of the Corrosion Analyzer (V3.2) can be used in one-phase flow only. This is because the 

mass transfer coefficients predicted in OLI software are applicable only to one-phase flow. It is 

therefore necessary to generalize the mass transfer formulation to multiphase flow if our goal is 

to use Corrosion Analyzer to predict corrosion in water-gas, water-oil, and water-oil-gas 

systems.  

 

We will show below that the above goal is achievable by using hydrodynamic properties 

computed in existing software packages (such as OLGA). Specifically, the predicted shear stress 

under water films, that may cover the inner surface of pipes, is used.   

 

Mass-transfer in OLI’s models 

In accordance with the principles of heterogeneous kinetics the rate of the m-th electrochemical 

reaction can be presented in the following form (in the units of current density): 

),,,( PTcEii sksmm          (1) 

where im is the current density that corresponds to m-th reaction, E is the metal potential, cks  (k= 

1,2…) are the surface concentrations of the species that determine the rate of the reaction, Ts is the 

surface temperature, and P is the pressure.  

 

However, we measure and, accordingly, need to calculate the following function:  
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where the index 0 refers all values to the bulk of solution. 

 

A transition from Equation (1) to Equation (2) can be obtained by solving the equations of mass 

and heat transfer, which allow us to find cks and Ts as functions of ck0 and T0.   

 

In the OLI model, we neglect the difference between the surface and bulk temperatures (i.e. Ts ≈ 

T0). It is also assumed that the rate of the m-th reaction depends only on a single ion with the 

concentration, cs, i.e. 

 
p
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were p is the order of the electrochemical reaction. In the absence of homogenous chemical 

reaction, in the first approximation, we have )( 0 sm cci   and, accordingly  
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where  

p

m nFkci 00,           (5) 

 

is the activation current density (i.e. partial current density in the absence of diffusion 

limitations) and  

0lim, cnFki mm          (6) 

is the limiting current density (i.e. partial current density at the absence of kinetic limitations). 

Here, km is the mass transfer coefficient of the m-th reaction. In a particular case when the order 

of the electrochemical reaction is p = 1, Equation (4) has a simple analytical solution 
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It is evident that at im,0 << im,lim we have im ≈ im,0 and at im,0 >> im,lim we have im ≈ im,lim. 

It follows from Equations (5)-(7) that the problem of describing mass transfer effects on the rate 

of corrosion reduces to the calculation of mass transfer coefficients. The OLI software calculates 

the mass transfer coefficients, km, for rotating disk electrode (laminar flow), rotating cylinders 

(turbulent flow) and single phase flow in a straight pipe (turbulent flow). It is clear that first two 

cases have no relations with the corrosion in pipelines. In the third case (single phase turbulent 

flow in straight pipe) mass transfer coefficients are estimated via empirical Berger and Hau 

(1977) [1] relations:  

33.086.0Re0165.0 ScSh        (8) 
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where 
D

kd
Sh  , 



Vd
Re  and 

D
Sc


  are Sherwood Reynolds and Schmidt numbers 

correspondingly. Here V is the average fluid velocity, d – is the diameter of the pipe, D is the 

diffusion coefficient and ν is the kinematic viscosity.  

The case of carbonic acid reduction (which is important for CO2 corrosion in oil and gas 

pipelines) requires a special treatment because reduction of H2CO3 

  OHHeCOH 232 5.0       (9) 

which is complicated by the homogeneous reaction:   

3222 COHOHCO        (10) 

In this case, ilim in OLI’s software is calculated via the expression (Nesic et al. (1996) [2] 
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where 
32COHK  is the equilibrium constant of Reaction (10) and f

COHk
32
 is the constant of the  

forward Reaction (10) and where y is the distance from the metal surface.  

It is easy to check that Equation (11) is the result of a solution of the transport equation for 

carbonic acid in a motionless liquid: 
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with the boundary conditions: 

0yat       0
32

COHc    and   yat       0,3232 COHCOH cc . 

Accordingly, Equation (11) can be used only in the case when the diffusion layer is so thin that 

the turbulent effects cannot influence mass transport. 

 

Turbulent Mass-Transfer in the Absence of Chemical Relations 

Usually, mass transfer near the electrode surface in a turbulent boundary layer is considered on 

the basis of a generalized Fick’s law [3] 
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where j is the diffusion flux density at the wall, c is the concentration of diffusing species, Dt is 

the eddy (turbulent) diffusion coefficient and y is the distance from the wall. 

It can be shown that the ratio  

)(  yf
Dt


        (14) 

where ν is the kinematic viscosity of the electrolyte and  


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
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y          (15) 

is the dimensionless distance from the wall. Here, τ0 is the shear stress at the metal surface and ρ 

is the density of the electrolyte. 

Usually the eddy diffusion coefficient is described by a power function: 3yDt   or 4yDt  . It 

can be easily proven that there are no linear or quadratic terms in the expansion of the function f 

in Equation (14) [4]. Up to now the most accurate description of the eddy diffusion coefficient is 

given by Wasan et al (1963) [5]. 
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In order to obtain all results in an analytical form, we will describe eddy diffusivity by the power 

function (with a power equal to 3): 

20at     )( 3   yyb
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
, where 41075.8 b      (17) 

The value of the empirical parameter b is chosen from the requirement that Equation (17) yields 

the same value of eddy difusivity at y+ = 20 (on the border of the so called logarithmic region), 

as Equation (16). 

Integration of Equation (13) [by taking into account Equations (15) and (17)] with the boundary 

condition c = cs at y+ = 0 yields: 
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The integral in Equation (18) converges very quickly. Thus, the difference between this integral 

and its limiting value  
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is less than 3 % at (bSc)1/3 y+ = 3.7 which corresponds y+ ≈ 4 at Sc = 103 and b = 8.75x10-4. 

Accordingly, we have  
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where 0c  is the bulk concentration of the species. Finally, for the mass transfer coefficient we 

have  
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In the case of one-phase flow the shear stress at the metal surface, τ0, can be found from the 

relation [6]: 

2

0
2
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f
          (22) 

where V is the average fluid velocity in the pipe an f is the friction coefficient. If for f we will use 

the simplest empirical Blasius relation for round smooth tubes [6]: 

4/1Re

079.0
f       (23) 

the dimensionless relation for mass transfer coefficient will have the form 

3/1875.0Re0157.0 Sc
D
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which practically coincides with the empirical Berger and Hau relation (see Equation(8). 

However, in the case of multiphase flow it is impossible to use the Blasius relation because 

presence of gas and oil fractions definitely influences the shear stress at the metal surface even 

under water film. In this case for calculating mass transfer coefficients we will use Equation (21) 

assuming that the value of shear stress at the metal surface under the liquid film will be provided 

by OLGA software. In accordance with the OLGA 5 User Manual the variable TAUWWTA 

yields “water-film-average wall shear stress” and namely this value will be used instead of τ0 in 

Equation (22). It is important to note that the approach described above can be used only if there 

is a liquid film on the metal surface inside the oil or gas pipeline. In accordance with the OLGA 
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5 User Manual such information is provided by the parameter WCWALL, which is defined as 1 

if there is a continuous water film at the wall. 

 

Turbulent Mass-Transfer with Chemical Reaction 

As mentioned above, the very important case of CO2 corrosion is complicated by the chemical 

Reaction (9). Accordingly, a generalization of the above method for a homogenous chemical 

reaction will be obtained here.    

In the case of a first-order chemical reaction with the rate constant, K, the equation of mass 

transfer has the form: 
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with the boundary conditions 

 yat      cc         ,0at     0  ycc s        (26) 

By using a dimensionless distance from the metal surface, y+, it is possible to rewrite Equation 

(26) in the form: 
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By using the method of asymptotic correction and the so called algebraic method [7, 8] it is 

possible to show that the ratio  kkX / , where k is the mass transfer coefficient and k  is mass 

transfer coefficient calculated at the absence of chemical reactions [for example, via Equation 

(21)] satisfy approximately the following cubic equation: 
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and 

KDk *       (30) 

is the mass transfer coefficient calculated at the absence of turbulent pulsations (in a motionless 

solution). 
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We will not provide here the derivation of Equation (28) because this derivation is relatively 

complicated and because we will compare the approximate solution of this equation (which can 

be considered as a interpolation formulas) with the numerical solution of Equation (27) that has 

been done by Vieth et al. (1963) [9].  

 

We will obtain an approximate solution of Equation (29) by using the simplest iteration method. 

Rewriting Equation (29) in the form MXX  /1  and choosing as a zero approximation X=1 

we will have in the fist approximation  
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which yield results that coincide with the results of numerical calculations [9] with great 

accuracy. Accordingly, there is no practical need to continue the iteration process. It is evident 

that at M→0 we have X ≈ 1. On the other hand at M→∞ we have X ≈ M1/2. It means that 

Equation (31) can be considered as an interpolation formulas between the evident limiting cases. 
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Figure 1. Comparison of values obtained from the approximate solution (Equation (31)) and 

numerical solution  

 

It is important to note that Equation (31) can be rewritten in the forms: 
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or  
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where dilim  is the limiting current calculated in the absence of  chemical reactions and kilim  is the 

limiting current density calculated in a stagnant electrolyte.  

Numerical calculations show that Equations (32) and (33) can be used not only in the case of the 

first order chemical reaction but also in the case of chemical reactions with an arbitrary order. 

The only difference is that in the last case the mass transfer coefficient calculated in the 

motionless solution, k*, can be calculated not via Relation (30) but can be found as the solution 

of the following equation  
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where f is an arbitrary function which satisfies the evident boundary condition f→0 at y→∞ (in 

the bulk of the solution, the concentration reaches its equilibrium value). Solution of the 

differential Equation (34) leads to the following relation [instead of Relation (30)] 
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It is evident, that at sccccf  00 )(  (first order reaction) Equations (30) and (35) yield the 

same results. 

 

Conclusion 

The method described above allows us to generalize the Corrosion Analyzer for the parts of oil 

and gas pipelines that are covered by water films so that the general corrosion rates, corrosion 

and repassivation potentials can be predicted if the value of shear stress under this water film is 

known. The shear stress value can be obtained from the OLGA software. 
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